DOI QR코드

DOI QR Code

Dunaliella salina as a Microalgal Biomass for Biogas Production

바이오 가스 생산을 위한 미세조류 바이오매스로서의 Dunaliella salina

  • Jeon, Nayeong (School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Kim, Daehee (School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • An, Junyeong (School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Kim, Taeyoung (School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Gim, Geun Ho (Department of Environmental Engineering, Chosun University) ;
  • Kang, Chang Min (Department of Environment & Health, Chodang University) ;
  • Kim, Duk Jin (Department of Water & Sewage, Korea Environment Corporation) ;
  • Kim, Si Wouk (Department of Environmental Engineering, Chosun University) ;
  • Chang, In Seop (School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST))
  • 전나영 (광주과학기술원 환경공학과) ;
  • 김대희 (광주과학기술원 환경공학과) ;
  • 안준영 (광주과학기술원 환경공학과) ;
  • 김태영 (광주과학기술원 환경공학과) ;
  • 김근호 (조선대학교 환경공학과) ;
  • 강창민 (초당대학교 환경보건학과) ;
  • 김덕진 (한국환경공단 상하수도지원처) ;
  • 김시욱 (조선대학교 환경공학과) ;
  • 장인섭 (광주과학기술원 환경공학과)
  • Received : 2012.07.16
  • Accepted : 2012.08.17
  • Published : 2012.09.28

Abstract

In this study, the ability of Chlorella vulgaris and Dunaliella salina to use biomass resources for anaerobic digestive biogas production was examined. The differences in cell wall structure pretreatments affecting the yield of soluble products showed that D. salina is a better candidate for biogas production than C. vulgaris. There was no significant difference between pretreated and non-pretreated D. salina in terms of methane production yield by inocula obtained from anaerobic digestion systems. Therefore, D. salina is a suitable algal biomass for biogas production due to its high biomass productivity, simple pretreatment needs, and easy conversion to biogas.

본 연구는 혐기성 소화조에서 바이오 가스 생산을 위한 바이오매스 자원으로서 Chlorella vulagaris와 Dunaliella salina의 이용능력을 확인하였다. 세포벽의 구조에 따라 전처리 후 용해성 물질의 수율이 영향을 받았는데, 이는 D. salina가 바이오 가스 생산 측면에서 C. vulgaris보다 좋은 후보라는 것을 보여준다. 혐기성 소화조에서 얻은 접종원으로부터 전처리하거나 전처리하지 않은 D. salina를 기질로서 메탄가스를 생산하는데 이용하였을 때 메탄 수율 측면에서 큰 차이가 없었다. 그러므로 D. salina는 높은 바이오매스 생산성, 단순한 전처리 필요성, 쉬운 바이오 가스전환 때문에 바이오 가스 생산을 위한 적합한 해조류 바이오매스이다.

Keywords

References

  1. Agbor, V. B., N. Cicek, R. Sparling, A. Berlin, and D. B. Levin. 2011. Biomass pretreatment: Fundamentals toward application. Biotechnol. Adv. 29: 675-685. https://doi.org/10.1016/j.biotechadv.2011.05.005
  2. Chang, V. S. and M. T. Holtzapple. 2000. Fundamental factors affecting biomass enzymatic reactivity. Appl. Biochem. Biotechnol. 84-86: 5-37. https://doi.org/10.1385/ABAB:84-86:1-9:5
  3. Chisti, Y. 2007. Biodiesel from microalgae. Biotechnol. Adv. 25: 294-306. https://doi.org/10.1016/j.biotechadv.2007.02.001
  4. Collet, P., A. Hélias, L. Lardon, M. Ras, R. A. Goy, and J. P. Steyer. 2011. Life-cycle assessment of microalgae culture coupled to biogas production. Bioresour. Technol. 102: 207-214. https://doi.org/10.1016/j.biortech.2010.06.154
  5. Kim, D. and I. S. Chang. 2009. Electricity generation from synthesis gas by microbial processes: CO fermentation and microbial fuel cell technology. Bioresour. Technol. 100: 4527-4530. https://doi.org/10.1016/j.biortech.2009.04.017
  6. Kim, W., J. M. Park, G. H. Gim, S. H. Jeong, C. M. Kang, D. J. Kim, and S. W. Kim. 2011. Optimization of culture conditions and comparison of biomass productivity of three green algae. Bioproess Biosyst. Eng. 35: 19-37.
  7. Mata, T. M., A. A. Martins, and N. S. Caetano. 2010. Microalgae for biodiesel production and other applications: A review. Renew. Sust. Energ. Rev. 14: 217-232. https://doi.org/10.1016/j.rser.2009.07.020
  8. Mussgnug, J. H., V. Klassen, A. Schlüter, and O. Kruse. 2011. Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. J. Biotechnol. 150: 51-56.
  9. Muyzer, G. and K. Smalla. 1998. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie van Leeuwenhoek. 73: 127-141. https://doi.org/10.1023/A:1000669317571
  10. Parmar, A., N. K. Singh, A. Pandey, E. Gnansounou, and D. Madamwar. 2011. Cyanobacteria and microalgae: A positive prospect for biofuels. Bioresour. Technol. 102: 10163-10172. https://doi.org/10.1016/j.biortech.2011.08.030
  11. Poschl, M., S. Ward, and P. Owende. 2010. Evaluation of energy efficiency of various biogas production and utilization pathways. Appl. Energ. 87: 3305-3321. https://doi.org/10.1016/j.apenergy.2010.05.011
  12. Ras, M., L. Lardon, S. Bruno, N. Bernet, and J. P. Steyer. 2011. Experimental study on a coupled process of production and anaerobic digestion of Chlorella vulgaris. Bioresour. Technol. 102: 200-206. https://doi.org/10.1016/j.biortech.2010.06.146
  13. Sialve, B., N. Bernet, and O. Bernard. 2009. Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol. Adv. 27: 409-416.
  14. Avron, M. 1986. The osmotic components of halotolerant algae. Trends Biochem. Sci. 11: 5-6. https://doi.org/10.1016/0968-0004(86)90218-5

Cited by

  1. Microalgae Dunaliella as biofuel feedstock and β-carotene production: An influential step towards environmental sustainability vol.13, pp.None, 2012, https://doi.org/10.1016/j.ecmx.2021.100154
  2. Bio-membrane integrated systems for nitrogen recovery from wastewater in circular bioeconomy vol.289, pp.None, 2012, https://doi.org/10.1016/j.chemosphere.2021.133175