References
- Achal, V., A. Mukherjee, P. C. Basu, and M. S. Reddy. 2009. Strain improvement of Sporosarcina pasteurii for enhanced urease and calcite production. J. Ind. Microbiol. Biotechnol. 36: 981-988. https://doi.org/10.1007/s10295-009-0578-z
- Adolphe, J. P., and C. Billy. 1974. Biosynthese de calcite par une association bacterienne aerobie. C. R. Acad. Sci. Paris 278: 2873-2875.
- Adolphe, J. P., A. Hourimeche, J. F. Loubiere, J. Paradas, and F. Soleilhavoup. 1989. Les formations carbonatees d'origine bacterienne. Formations continentales d'Afrique du Nord. Bull. Soc. Geol. Fr. 8: 55-62.
- Adolphe, J. P., J. F. Loubiere, J. Paradas, and F. Soleilhavoup. 1990. Procede de traitement biologique d'une surface artificielle. European patent 90400G97.0. (after French patent 8903517, 1989).
- Altcin, P. C. 2000. Cements of yesterday and today concrete of tomorrow. Cem. Concr. Res. 30: 1349-1359. https://doi.org/10.1016/S0008-8846(00)00365-3
- Bang, S. S., J. K. Galinat, and V. Ramakrishnan. 2001. Calcite precipitation induced by polyurethane-immobilized Sporosarcina pasteurii. Enzyme Microb. Technol. 28: 404-409. https://doi.org/10.1016/S0141-0229(00)00348-3
- Basheer, P. A., M., L. Basheer, D. J., Cleland, A. E. Long. 1997. Surface treatments for concrete: assessment methods and reported performance. Constr. Build. Mater. 11: 413-429. https://doi.org/10.1016/S0950-0618(97)00019-6
- Basheer, L., and D. J. Cleland. 2006. Freeze-thaw resistance of concretes treated with pore liners. Constr. Build. Mater. 20: 990-998. https://doi.org/10.1016/j.conbuildmat.2005.06.010
- Barabesi, C., A. Galizzi, G. Mastromei, M. Rossi, E. Tamburini, and B. Perito. 2007. Bacillus subtilis gene cluster involved in calcium carbonate biomineralization. J. Bacteriol. 189: 228-235. https://doi.org/10.1128/JB.01450-06
- Bazylinski, D. A., R. B. Frankel, and K. O. Konhauser. 2007. Modes of biomineralization of magnetite by microbes. Geomicrobiol. J. 24: 465-475. https://doi.org/10.1080/01490450701572259
- Boquet, E., A. Boronat, and A. Ramos-Cormenzana. 1973. Production of calcite (calcium carbonate) crystals by soil bacteria is a general phenomenon. Nature 246: 527-529. https://doi.org/10.1038/246527a0
- Braissant, O., E. Verrecchia, and M. Aragno. 2002. Is the contribution of bacteria to terrestrial carbon budget greatly underestimated? Naturwissenschaften. 89: 366-370. https://doi.org/10.1007/s00114-002-0340-0
- Cappitelli, F., L. Toniolo, A. Sansonetti, D. Gulotta, G. Ranalli, E. Zanardini, and C Sorlini. 2007. Advantages of using microbial technology over traditional chemical technology in removal of black crusts from stone surfaces of historical monuments. Appl. Environ. Microbiol. 73: 5671-5675. https://doi.org/10.1128/AEM.00394-07
- Castanier, S., G. Le Metayer-Levrel, and J. P. Perthuisot. 1999. Ca-carbonates precipitation and limestone genesis-the microbiogeologist point of view. Sediment. Geol. 126: 9-23. https://doi.org/10.1016/S0037-0738(99)00028-7
-
Chunxiang, Q. W. Jianyun, W. Ruixing, and C. Liang. 2009. Corrosion protection of cement-based building materials by surface deposition of
$CaCO_3$ by Bacillus pasteurii. Mater. Sci. Eng. 29: 1273-1280. https://doi.org/10.1016/j.msec.2008.10.025 - De Muynck, W., D. Debrouwer, N. De Belie, and W. Verstraete. 2008. Bacterial carbonate precipitation improves the durability of cementitious materials. Cem. Concr. Res. 38: 1005-1014. https://doi.org/10.1016/j.cemconres.2008.03.005
- De Muynck, W., N. De Belie, and W. Verstraete. 2010. Microbial carbonate precipitation in construction materials: A review. Ecol. Eng. 36: 118-136. https://doi.org/10.1016/j.ecoleng.2009.02.006
- Douglas, S., and T. J. Beveridge. 1998. Mineral formation by bacteria in natural microbial communities. FEMS Microbiol. Ecol. 26: 79-88. https://doi.org/10.1111/j.1574-6941.1998.tb00494.x
- Ehrlich, H. L. 1996. How microbes influence mineral growth and dissolution. Chem. Geol. 132: 5-9. https://doi.org/10.1016/S0009-2541(96)00035-6
- Ghosh, P., S. Mandal, B. D. Chattopadhyay, and S. Pal. 2005. Use of microorganism to improve the strength of cement mortar. Cem. Concr. Res. 35: 1980-1983. https://doi.org/10.1016/j.cemconres.2005.03.005
- Ghosh, S., M. Biswas, B. D. Chattopadhya, and S. Mandal. 2009. Microbial activity on the microstructure of bacteria modified mortar. Cem. Concr. Compos. 31: 93-98 https://doi.org/10.1016/j.cemconcomp.2009.01.001
- Hammes, F., and W. Verstraete. 2002. Key roles of pH and calcium metabolism in microbial carbonate precipitation. Rev. Environ. Sci. Biotechnol. 1: 3-7. https://doi.org/10.1023/A:1015135629155
- Hammes, F., N. Boon, J. de Villiers, W. Verstraete, and S. D. Siciliano. 2003. Strain-specific ureolytic microbial calcium carbonate precipitation. Appl. Environ. Microbiol. 69: 4901-4909. https://doi.org/10.1128/AEM.69.8.4901-4909.2003
- Ibrahim, M. A. S. Al-Gahtani, M. Maslehuddin, and A. A. Almusallam. 1997. Effectiveness of concrete surface treatment materials in reducing chloride-induced reinforcement corrosion. Constr. Build. Mater. 11: 443-451.
- Jonkers, H. M. 2007. Self-healing concrete: a biological approach. Self-Healing Materials. An Alternative Approach to 20 Centuries of Materials Science. 195-204.
- Jonkers, H. M., A. Thijssen, and E. Schlangen. 2008. Ont-wikkeling van zelfherstellend beton met behulp van bacterien. Cement 4: 78-81.
- Jonkers, H. M., A. Thijssen, G. Muyzer, O. Copuroglu, and E. Schlangen. 2010. Application of bacteria as self-healing agent for the development of sustainable concrete. Ecol. Eng. 26: 230-235.
- Jonkers, H. M. 2011. Bacteria-based self-healing concrete. Heron 56: 1-12.
- Kim, W. J., S. Y. Ghim, S. J. Park, K. J. Choi, and W. Y. Chun. 2010. Development of smart concrete by microbiologically induced calcite precipitation. J. Kor. Concr. Ins. 22: 547-557 https://doi.org/10.4334/JKCI.2010.22.4.547
- Kim, W. J., S. T. Kim, S. J. Park, S. Y. Ghim, and W. Y. Chun. 2009. A study on the development of self-healing smart concrete using microbial biomineralization. J. Kor. Concr. Inst. 21: 501-511. https://doi.org/10.4334/JKCI.2009.21.4.501
- Knorre, H., and W. Krumbein. 2000. Bacterial calcification, pp. 25-31. In R. E. Riding and S. M. Awramik (ed.), Microbial sediments. Springer-Verlag, Berlin, Germany.
- Le Metayer-Levrel, G., S. Castanier, G. Orial, J. F. Loubiere, and J. P. Perthuisot. 1999. Applications of bacterial carbona-togenesis to the protection and regeneration of limestones in buildings and historic patrimony. Sediment. Geol. 126: 25-34.
- Neville, A. M. 1996. Properties of concrete. 4th edn. Pearson Higher Education. Prentice Hall. NJ.
- Oss, H. G. and A. C. Padovani. 2002. Cement manufacture and the environment. J. Ind. Ecol. 6: 89-105. https://doi.org/10.1162/108819802320971650
- Park, S. J., Y. M. Park, W. Y. Chun, W. J. Kim, and S. Y. Ghim. 2010. Calcite-forming bacteria for compressive strength improvement in mortar. J. Microbiol. Biotecnol. 20: 782-788.
- Park, S. J., N. Y. Lee, W. J. Kim, and S. Y. Ghim. 2010. Application of bacteria isolated from dok-do for improving compressive strength and crack remediation of cement-sand mortar. Kor. J. Microbiol. Biotechnol. 38: 216-221.
- Park, J. M., S. J. Park, and S. Y. Ghim. 2011. Isolation of fungal deteriogens inducing aesthetical problems and antifungal calcite forming bacteria from the tunnel and their characteristics. Kor. J. Microbiol. Biotechnol. 39: 287-293.
- Peckman, J., J. Paul, and V. Thiel. 1999. Bacterially mediated formation of diagenetic aragonite and native sulphur in Zechstein carbonates (Upper Permian, central Germany). Sediment. Geol. 126: 205-222. https://doi.org/10.1016/S0037-0738(99)00041-X
- Ramachandran, S. K., V. Ramakrishnan, and S. S. Bang. 2001. Remediation of concrete using micro-organisms. ACI Mater. 98: 3-9.
- Rivadeneyra, M. A., G. Delgado, A. Ramos-Cormenzana, and R. Delgado. 1998. Biomineralisation of carbonates by Halomonas eurihalina in solid and liquid media with different salinities: crystal formation sequence. Res. Microbiol. 149: 277-287. https://doi.org/10.1016/S0923-2508(98)80303-3
- Rivadeneyra, M. A., G. Delgado, M. Soriano, A. Ramos-Cormenzana, and R. Delgado. 2000. Precipitation of carbonates by Nesterenkonia halobia in liquid media. Chemosphere 41: 617-624. https://doi.org/10.1016/S0045-6535(99)00496-8
- Rodriguez-Navarro, C., M. Rodriguez-Gallego, K. Ben Chekroun, and M. T. Gonzalez-Munoz. 2003. Conservation of ornamental stone by Myxococcus xanthus-induced carbonate biomineralization. Appl. Environ. Microbiol. 69: 2182-2193. https://doi.org/10.1128/AEM.69.4.2182-2193.2003
- Saroj, M. 2006. A process for preparing modified bioconcrete. C04B 28/02 (Indian patent).
- Schultze-Lam, S., D. Fortin, B. S. Davis, and T. J. Beveridge. 1996. Mineralization of bacterial surfaces. Chem. Geol. 132: 171-181. https://doi.org/10.1016/S0009-2541(96)00053-8
-
Stocks-Fischer, S., J. K. Galinat, and S. S. Bang. 1999. Microbiological precipitation of
$CaCO_3$ . Soil. Biol. Biochem. 31: 1563-1571. https://doi.org/10.1016/S0038-0717(99)00082-6 - Shen, J. and X. Cheng. 2008. Laboratory investigation on restoration of Chinese ancient masonry buildings using microbial carbonate precipitation. In 1st BioGeoCivil Engineering Conference, Delft.
- Tiano, P., L. Biagiotti, and G. Mastromei. 1999. Bacterial bio-mediated calcite precipitation for monumental stones conservation: methods of evaluation. J. Microbiol. Met. 36: 139-145. https://doi.org/10.1016/S0167-7012(99)00019-6
- Tiano, P., E. Cantisani, I. Sutherland, and J. M. Paget. 2006. Biomediated reinforcement of weathered calcareous stones. J. Cult. Herit. 7: 49-55. https://doi.org/10.1016/j.culher.2005.10.003
- Van Tittelboom, K., N. De Belie, W. De Muynck, and W. Verstraete. 2010. Use of bacteria to repair cracks in concrete. Cem. Concr. Res. 40: 157-166. https://doi.org/10.1016/j.cemconres.2009.08.025
- Warscheid, Th., and J. Braams. 2000. Biodeterioration of stone: a review. Int. Biodet. Biodeg. 46: 343-368. https://doi.org/10.1016/S0964-8305(00)00109-8
Cited by
- (+)-Dihydromyricetin 정제를 위한 분별침전공정 개선 vol.42, pp.1, 2014, https://doi.org/10.4014/kjmb.1312.12002
- 주목 식물세포(Taxus chinensis) 배양 유래 Paclitaxel 정제를 위한 분별침전에서 제타전위 영향 vol.42, pp.2, 2012, https://doi.org/10.4014/kjmb.1404.04002
- 표면적이 증가된 분별침전에서 친수성 고분자물질을 이용한 paclitaxel의 입자 크기 감소 vol.43, pp.4, 2012, https://doi.org/10.4014/mbl.1510.10003
- 광합성균을 혼입한 시멘트 모르타르의 CO2 흡수성능에 관한 기초적 연구 vol.15, pp.1, 2012, https://doi.org/10.5345/jkibc.2015.15.1.017
- 고분자물질을 이용한 분별침전 공정에서 파클리탁셀의 입자크기 감소 vol.54, pp.2, 2012, https://doi.org/10.9713/kcer.2016.54.2.278
- Effect of drying methods on removal of residual solvents from solvent-induced amorphous paclitaxel vol.34, pp.12, 2017, https://doi.org/10.1007/s11814-017-0252-5
- Biocementation of Concrete Pavements Using Microbially Induced Calcite Precipitation vol.27, pp.7, 2017, https://doi.org/10.4014/jmb.1701.01041
- 파클리탁셀의 잔류 펜탄 제거를 위한 회전증발의 동역학 및 열역학에 관한 연구 vol.55, pp.6, 2012, https://doi.org/10.9713/kcer.2017.55.6.807
- Evaluation of Self-Healing Performance of PE and PVA Concrete Using Flexural Test vol.2018, pp.None, 2018, https://doi.org/10.1155/2018/6386280
- Calcium Carbonate Precipitation by Rock Dwelling Bacteria in Murree Hills, Lower Himalaya Range Pakistan vol.38, pp.3, 2012, https://doi.org/10.1080/01490451.2020.1836085