DOI QR코드

DOI QR Code

Applications and Prospects of Calcium Carbonate Forming Bacteria in Construction Materials

건축공학분야에서 탄산칼슘형성세균의 응용과 전망

  • Park, Sung-Jin (School of Life Sciences and Institute for Microorganisms, Kyungpook National University) ;
  • Ghim, Sa-Youl (School of Life Sciences and Institute for Microorganisms, Kyungpook National University)
  • 박성진 (경북대학교 생명과학부 미생물연구소) ;
  • 김사열 (경북대학교 생명과학부 미생물연구소)
  • Received : 2012.02.21
  • Accepted : 2012.04.06
  • Published : 2012.09.28

Abstract

Microbiological calcium carbonate precipitation (MCCP) is being applied for the aesthetic restoration of cement buildings destroyed by biochemical processes and to block water penetration into the cement's inner structure. After determining the advantages of this technique, many related studies in the area of architecture concerning the application of microorganisms to improve construction material have been reported in both America and Europe. The techniques compatibility with cement material is especially interesting because of the needed screening of various calcium carbonate forming-bacteria and the required development of their application methods. The purpose of this review is to describe the mechanism of MCCP and related researches with eco-friendly construction materials. Mainly, we describe the methodological studies focused on biodeposition on the surface of building materials and the research trends concerning the addition of microorganisms to improve the durability of cement structures. Additionally, the concepts and technical aspects focused on the development of self-healing smart concrete, with the use of multi-functional bacteria, have been considered.

미생물에 의한 탄산칼슘침전은 생물 화학적으로 풍화, 침식된 시멘트 건축구조물 표면의 미학적 복원 및 수분침투 방지를 목적으로 응용되었다. 이 기술의 두드러진 장점이 보고된 후 유럽과 미국을 중심으로 미생물을 이용한 건축공학적 응용가능성에 대한 연구가 활발히 이루어져 왔다. 견고하고 원재료와의 호환성이 뛰어난 이 기술은 다양한 탄산칼슘형성세균의 선별 또는 배양 및 적용방법의 개발로 그 관심이 촉발되었다. 본 총설의 목적은 친환경적 건축소재에 대한 관심이 높아지고 그 필요성이 대두되고 있는 현 시점에서 미생물 탄산칼슘형성 매카니즘과 그 관련 기술들을 검토해 보고자 한다. 본론에선 시멘트 건축물 표면코팅 효과에 대한 방법론적 연구사례들을 조사하였고, 시멘트 구조물의 내구성 증진을 위한 미생물의 첨가에 대한 연구사례들도 함께 살펴보았다. 부가적으로 향후 미생물의 다기능성을 이용한 자기수복 스마트 콘크리트 개발에 대한 개념을 살펴보고 그 미래를 전망하였다.

Keywords

References

  1. Achal, V., A. Mukherjee, P. C. Basu, and M. S. Reddy. 2009. Strain improvement of Sporosarcina pasteurii for enhanced urease and calcite production. J. Ind. Microbiol. Biotechnol. 36: 981-988. https://doi.org/10.1007/s10295-009-0578-z
  2. Adolphe, J. P., and C. Billy. 1974. Biosynthese de calcite par une association bacterienne aerobie. C. R. Acad. Sci. Paris 278: 2873-2875.
  3. Adolphe, J. P., A. Hourimeche, J. F. Loubiere, J. Paradas, and F. Soleilhavoup. 1989. Les formations carbonatees d'origine bacterienne. Formations continentales d'Afrique du Nord. Bull. Soc. Geol. Fr. 8: 55-62.
  4. Adolphe, J. P., J. F. Loubiere, J. Paradas, and F. Soleilhavoup. 1990. Procede de traitement biologique d'une surface artificielle. European patent 90400G97.0. (after French patent 8903517, 1989).
  5. Altcin, P. C. 2000. Cements of yesterday and today concrete of tomorrow. Cem. Concr. Res. 30: 1349-1359. https://doi.org/10.1016/S0008-8846(00)00365-3
  6. Bang, S. S., J. K. Galinat, and V. Ramakrishnan. 2001. Calcite precipitation induced by polyurethane-immobilized Sporosarcina pasteurii. Enzyme Microb. Technol. 28: 404-409. https://doi.org/10.1016/S0141-0229(00)00348-3
  7. Basheer, P. A., M., L. Basheer, D. J., Cleland, A. E. Long. 1997. Surface treatments for concrete: assessment methods and reported performance. Constr. Build. Mater. 11: 413-429. https://doi.org/10.1016/S0950-0618(97)00019-6
  8. Basheer, L., and D. J. Cleland. 2006. Freeze-thaw resistance of concretes treated with pore liners. Constr. Build. Mater. 20: 990-998. https://doi.org/10.1016/j.conbuildmat.2005.06.010
  9. Barabesi, C., A. Galizzi, G. Mastromei, M. Rossi, E. Tamburini, and B. Perito. 2007. Bacillus subtilis gene cluster involved in calcium carbonate biomineralization. J. Bacteriol. 189: 228-235. https://doi.org/10.1128/JB.01450-06
  10. Bazylinski, D. A., R. B. Frankel, and K. O. Konhauser. 2007. Modes of biomineralization of magnetite by microbes. Geomicrobiol. J. 24: 465-475. https://doi.org/10.1080/01490450701572259
  11. Boquet, E., A. Boronat, and A. Ramos-Cormenzana. 1973. Production of calcite (calcium carbonate) crystals by soil bacteria is a general phenomenon. Nature 246: 527-529. https://doi.org/10.1038/246527a0
  12. Braissant, O., E. Verrecchia, and M. Aragno. 2002. Is the contribution of bacteria to terrestrial carbon budget greatly underestimated? Naturwissenschaften. 89: 366-370. https://doi.org/10.1007/s00114-002-0340-0
  13. Cappitelli, F., L. Toniolo, A. Sansonetti, D. Gulotta, G. Ranalli, E. Zanardini, and C Sorlini. 2007. Advantages of using microbial technology over traditional chemical technology in removal of black crusts from stone surfaces of historical monuments. Appl. Environ. Microbiol. 73: 5671-5675. https://doi.org/10.1128/AEM.00394-07
  14. Castanier, S., G. Le Metayer-Levrel, and J. P. Perthuisot. 1999. Ca-carbonates precipitation and limestone genesis-the microbiogeologist point of view. Sediment. Geol. 126: 9-23. https://doi.org/10.1016/S0037-0738(99)00028-7
  15. Chunxiang, Q. W. Jianyun, W. Ruixing, and C. Liang. 2009. Corrosion protection of cement-based building materials by surface deposition of $CaCO_3$ by Bacillus pasteurii. Mater. Sci. Eng. 29: 1273-1280. https://doi.org/10.1016/j.msec.2008.10.025
  16. De Muynck, W., D. Debrouwer, N. De Belie, and W. Verstraete. 2008. Bacterial carbonate precipitation improves the durability of cementitious materials. Cem. Concr. Res. 38: 1005-1014. https://doi.org/10.1016/j.cemconres.2008.03.005
  17. De Muynck, W., N. De Belie, and W. Verstraete. 2010. Microbial carbonate precipitation in construction materials: A review. Ecol. Eng. 36: 118-136. https://doi.org/10.1016/j.ecoleng.2009.02.006
  18. Douglas, S., and T. J. Beveridge. 1998. Mineral formation by bacteria in natural microbial communities. FEMS Microbiol. Ecol. 26: 79-88. https://doi.org/10.1111/j.1574-6941.1998.tb00494.x
  19. Ehrlich, H. L. 1996. How microbes influence mineral growth and dissolution. Chem. Geol. 132: 5-9. https://doi.org/10.1016/S0009-2541(96)00035-6
  20. Ghosh, P., S. Mandal, B. D. Chattopadhyay, and S. Pal. 2005. Use of microorganism to improve the strength of cement mortar. Cem. Concr. Res. 35: 1980-1983. https://doi.org/10.1016/j.cemconres.2005.03.005
  21. Ghosh, S., M. Biswas, B. D. Chattopadhya, and S. Mandal. 2009. Microbial activity on the microstructure of bacteria modified mortar. Cem. Concr. Compos. 31: 93-98 https://doi.org/10.1016/j.cemconcomp.2009.01.001
  22. Hammes, F., and W. Verstraete. 2002. Key roles of pH and calcium metabolism in microbial carbonate precipitation. Rev. Environ. Sci. Biotechnol. 1: 3-7. https://doi.org/10.1023/A:1015135629155
  23. Hammes, F., N. Boon, J. de Villiers, W. Verstraete, and S. D. Siciliano. 2003. Strain-specific ureolytic microbial calcium carbonate precipitation. Appl. Environ. Microbiol. 69: 4901-4909. https://doi.org/10.1128/AEM.69.8.4901-4909.2003
  24. Ibrahim, M. A. S. Al-Gahtani, M. Maslehuddin, and A. A. Almusallam. 1997. Effectiveness of concrete surface treatment materials in reducing chloride-induced reinforcement corrosion. Constr. Build. Mater. 11: 443-451.
  25. Jonkers, H. M. 2007. Self-healing concrete: a biological approach. Self-Healing Materials. An Alternative Approach to 20 Centuries of Materials Science. 195-204.
  26. Jonkers, H. M., A. Thijssen, and E. Schlangen. 2008. Ont-wikkeling van zelfherstellend beton met behulp van bacterien. Cement 4: 78-81.
  27. Jonkers, H. M., A. Thijssen, G. Muyzer, O. Copuroglu, and E. Schlangen. 2010. Application of bacteria as self-healing agent for the development of sustainable concrete. Ecol. Eng. 26: 230-235.
  28. Jonkers, H. M. 2011. Bacteria-based self-healing concrete. Heron 56: 1-12.
  29. Kim, W. J., S. Y. Ghim, S. J. Park, K. J. Choi, and W. Y. Chun. 2010. Development of smart concrete by microbiologically induced calcite precipitation. J. Kor. Concr. Ins. 22: 547-557 https://doi.org/10.4334/JKCI.2010.22.4.547
  30. Kim, W. J., S. T. Kim, S. J. Park, S. Y. Ghim, and W. Y. Chun. 2009. A study on the development of self-healing smart concrete using microbial biomineralization. J. Kor. Concr. Inst. 21: 501-511. https://doi.org/10.4334/JKCI.2009.21.4.501
  31. Knorre, H., and W. Krumbein. 2000. Bacterial calcification, pp. 25-31. In R. E. Riding and S. M. Awramik (ed.), Microbial sediments. Springer-Verlag, Berlin, Germany.
  32. Le Metayer-Levrel, G., S. Castanier, G. Orial, J. F. Loubiere, and J. P. Perthuisot. 1999. Applications of bacterial carbona-togenesis to the protection and regeneration of limestones in buildings and historic patrimony. Sediment. Geol. 126: 25-34.
  33. Neville, A. M. 1996. Properties of concrete. 4th edn. Pearson Higher Education. Prentice Hall. NJ.
  34. Oss, H. G. and A. C. Padovani. 2002. Cement manufacture and the environment. J. Ind. Ecol. 6: 89-105. https://doi.org/10.1162/108819802320971650
  35. Park, S. J., Y. M. Park, W. Y. Chun, W. J. Kim, and S. Y. Ghim. 2010. Calcite-forming bacteria for compressive strength improvement in mortar. J. Microbiol. Biotecnol. 20: 782-788.
  36. Park, S. J., N. Y. Lee, W. J. Kim, and S. Y. Ghim. 2010. Application of bacteria isolated from dok-do for improving compressive strength and crack remediation of cement-sand mortar. Kor. J. Microbiol. Biotechnol. 38: 216-221.
  37. Park, J. M., S. J. Park, and S. Y. Ghim. 2011. Isolation of fungal deteriogens inducing aesthetical problems and antifungal calcite forming bacteria from the tunnel and their characteristics. Kor. J. Microbiol. Biotechnol. 39: 287-293.
  38. Peckman, J., J. Paul, and V. Thiel. 1999. Bacterially mediated formation of diagenetic aragonite and native sulphur in Zechstein carbonates (Upper Permian, central Germany). Sediment. Geol. 126: 205-222. https://doi.org/10.1016/S0037-0738(99)00041-X
  39. Ramachandran, S. K., V. Ramakrishnan, and S. S. Bang. 2001. Remediation of concrete using micro-organisms. ACI Mater. 98: 3-9.
  40. Rivadeneyra, M. A., G. Delgado, A. Ramos-Cormenzana, and R. Delgado. 1998. Biomineralisation of carbonates by Halomonas eurihalina in solid and liquid media with different salinities: crystal formation sequence. Res. Microbiol. 149: 277-287. https://doi.org/10.1016/S0923-2508(98)80303-3
  41. Rivadeneyra, M. A., G. Delgado, M. Soriano, A. Ramos-Cormenzana, and R. Delgado. 2000. Precipitation of carbonates by Nesterenkonia halobia in liquid media. Chemosphere 41: 617-624. https://doi.org/10.1016/S0045-6535(99)00496-8
  42. Rodriguez-Navarro, C., M. Rodriguez-Gallego, K. Ben Chekroun, and M. T. Gonzalez-Munoz. 2003. Conservation of ornamental stone by Myxococcus xanthus-induced carbonate biomineralization. Appl. Environ. Microbiol. 69: 2182-2193. https://doi.org/10.1128/AEM.69.4.2182-2193.2003
  43. Saroj, M. 2006. A process for preparing modified bioconcrete. C04B 28/02 (Indian patent).
  44. Schultze-Lam, S., D. Fortin, B. S. Davis, and T. J. Beveridge. 1996. Mineralization of bacterial surfaces. Chem. Geol. 132: 171-181. https://doi.org/10.1016/S0009-2541(96)00053-8
  45. Stocks-Fischer, S., J. K. Galinat, and S. S. Bang. 1999. Microbiological precipitation of $CaCO_3$. Soil. Biol. Biochem. 31: 1563-1571. https://doi.org/10.1016/S0038-0717(99)00082-6
  46. Shen, J. and X. Cheng. 2008. Laboratory investigation on restoration of Chinese ancient masonry buildings using microbial carbonate precipitation. In 1st BioGeoCivil Engineering Conference, Delft.
  47. Tiano, P., L. Biagiotti, and G. Mastromei. 1999. Bacterial bio-mediated calcite precipitation for monumental stones conservation: methods of evaluation. J. Microbiol. Met. 36: 139-145. https://doi.org/10.1016/S0167-7012(99)00019-6
  48. Tiano, P., E. Cantisani, I. Sutherland, and J. M. Paget. 2006. Biomediated reinforcement of weathered calcareous stones. J. Cult. Herit. 7: 49-55. https://doi.org/10.1016/j.culher.2005.10.003
  49. Van Tittelboom, K., N. De Belie, W. De Muynck, and W. Verstraete. 2010. Use of bacteria to repair cracks in concrete. Cem. Concr. Res. 40: 157-166. https://doi.org/10.1016/j.cemconres.2009.08.025
  50. Warscheid, Th., and J. Braams. 2000. Biodeterioration of stone: a review. Int. Biodet. Biodeg. 46: 343-368. https://doi.org/10.1016/S0964-8305(00)00109-8

Cited by

  1. (+)-Dihydromyricetin 정제를 위한 분별침전공정 개선 vol.42, pp.1, 2014, https://doi.org/10.4014/kjmb.1312.12002
  2. 주목 식물세포(Taxus chinensis) 배양 유래 Paclitaxel 정제를 위한 분별침전에서 제타전위 영향 vol.42, pp.2, 2012, https://doi.org/10.4014/kjmb.1404.04002
  3. 표면적이 증가된 분별침전에서 친수성 고분자물질을 이용한 paclitaxel의 입자 크기 감소 vol.43, pp.4, 2012, https://doi.org/10.4014/mbl.1510.10003
  4. 광합성균을 혼입한 시멘트 모르타르의 CO2 흡수성능에 관한 기초적 연구 vol.15, pp.1, 2012, https://doi.org/10.5345/jkibc.2015.15.1.017
  5. 고분자물질을 이용한 분별침전 공정에서 파클리탁셀의 입자크기 감소 vol.54, pp.2, 2012, https://doi.org/10.9713/kcer.2016.54.2.278
  6. Effect of drying methods on removal of residual solvents from solvent-induced amorphous paclitaxel vol.34, pp.12, 2017, https://doi.org/10.1007/s11814-017-0252-5
  7. Biocementation of Concrete Pavements Using Microbially Induced Calcite Precipitation vol.27, pp.7, 2017, https://doi.org/10.4014/jmb.1701.01041
  8. 파클리탁셀의 잔류 펜탄 제거를 위한 회전증발의 동역학 및 열역학에 관한 연구 vol.55, pp.6, 2012, https://doi.org/10.9713/kcer.2017.55.6.807
  9. Evaluation of Self-Healing Performance of PE and PVA Concrete Using Flexural Test vol.2018, pp.None, 2018, https://doi.org/10.1155/2018/6386280
  10. Calcium Carbonate Precipitation by Rock Dwelling Bacteria in Murree Hills, Lower Himalaya Range Pakistan vol.38, pp.3, 2012, https://doi.org/10.1080/01490451.2020.1836085