DOI QR코드

DOI QR Code

In-vitro and in-vivo Behaviors of Poly(glycolide-caprolactone) Copolymer for Bioabsorbable Suture Materials

  • Yoo, Yeon-Chun (Department of Textile Engineering, Chonbuk National University) ;
  • Kim, Hak-Yong (Department of Textile Engineering, Chonbuk National University) ;
  • Jin, Fan-Long (School of Chemical and Materials Engineering, Jilin Institute of Chemical Technology) ;
  • Park, Soo-Jin (Department of Chemistry, Inha University)
  • Received : 2012.07.26
  • Accepted : 2012.09.28
  • Published : 2012.12.20

Abstract

A novel bioabsorbable suture material, poly(glycolide-caprolactone) (PGLCL) monofilament, was prepared by spinning of the PGLCL copolymer. The physical properties, strength retention, biocompatibility, and organism resolvability of the PGLCL monofilament were investigated. The results showed that the knot pull strength of the monofilament was higher than that stated in European Pharmacopoeia. The in vivo retention strength following implantation was 64%, 23%, 7%, and 0% after one, two, three, and four weeks, respectively. Mortality, clinical signs, validation, and sterility tests indicated that all items had passed. Organism resolvability tests showed that the PGLCL monofilament, as a suture, was absorbed within 91 days.

Keywords

References

  1. Guarino, V.; Causa, F.; Taddei, P.; Foggia, M.; Ciapetti, G.; Martini, D.; Fagnano, C.; Baldini, N.; Ambrosio, L. Biomaterials 2008, 29, 3662. https://doi.org/10.1016/j.biomaterials.2008.05.024
  2. McClure, M. J.; Sell, S. A.; Simpson, D. G.; Walpoth, B. H.; Bowlin, G. L. Acta Biomater. 2010, 6, 2422. https://doi.org/10.1016/j.actbio.2009.12.029
  3. Zhang, J.; Xu, J.; Wang, H.; Jin, W.; Li, J. Mater. Sci. Eng. C 2009, 29, 889. https://doi.org/10.1016/j.msec.2008.08.002
  4. Vasenius, J.; Vainionpaa, S.; Vihtonen, K.; Mero, M.; Mikkola, J.; Rokkanen, P.; Tormala, P. Clin. Mater. 1989, 4, 307. https://doi.org/10.1016/0267-6605(89)90011-5
  5. Lee, K. B.; Lee, Y. W.; Kim, D. J.; Lee, S. M.; Woo, S. I.; Kim, Y.; Kim, Y. G.; Choi, I. S. Bull. Korean Chem. Soc. 2003, 24, 1702. https://doi.org/10.5012/bkcs.2003.24.11.1702
  6. Kim, S. Y.; Jeon, S. H. J. Ind. Eng. Chem. 2012, 18, 128. https://doi.org/10.1016/j.jiec.2011.11.001
  7. Ashammakhi, N.; Rokkanen, P. Biomoteriols 1997, 18, 3. https://doi.org/10.1016/S0142-9612(96)00107-X
  8. Williamson, M. R.; Coombes, A. G. A. Biomaterials 2004, 25, 459. https://doi.org/10.1016/S0142-9612(03)00536-2
  9. Woodruff, M. A.; Hutmacher, D. W. Prog. Polym. Sci. 2010, 35, 1217. https://doi.org/10.1016/j.progpolymsci.2010.04.002
  10. Kweon, H. Y.; Yoo, M. K.; Park, I. K.; Kim, T. H.; Lee, H. C.; Lee, H. S.; Oh, J. S.; Akaike, T.; Cho, C. S. Biomaterials 2003, 24, 801. https://doi.org/10.1016/S0142-9612(02)00370-8
  11. Neppalli, R.; Marega, C.; Marigo, A.; Bajgai, M. P.; Kim, H. Y.; Causin, V. Polymer 2011, 52, 4054. https://doi.org/10.1016/j.polymer.2011.06.039
  12. Yoo, Y. C.; Kim, H. Y.; Jin, F. L.; Park, S. J. Macromol. Res. 2012, accepted.
  13. Wust, D. M.; Meyer, D. C.; Favre, P.; Gerber, C. Arthroscopy 2006, 22, 1146. https://doi.org/10.1016/j.arthro.2006.06.013
  14. Makela, P.; Pohjonen, T.; Tormala, P.; Waris, T.; Ashammakhi, N. Biomaterials 2002, 23, 2587. https://doi.org/10.1016/S0142-9612(01)00396-9
  15. Tomihata, K.; Suzuki, M.; Oka, T.; Ikada, Y. Polym. Degrad. Stab. 1998, 59, 13. https://doi.org/10.1016/S0141-3910(97)00183-3
  16. Zeiger, E. Toxicol. Lett. 2003, 140-141, 31. https://doi.org/10.1016/S0378-4274(02)00493-9
  17. Yokoigawa, K.; Okubo, Y.; Kawai, H. J. Biosci. Bioeng. 1999, 88, 26. https://doi.org/10.1016/S1389-1723(99)80170-4
  18. Balch, O. K.; Collier, A.; DeBault, L. E.; Johnson, L. L. Arthroscopy 1999, 15, 691. https://doi.org/10.1016/S0749-8063(99)70001-0

Cited by

  1. Emerging Perspectives in the Synthesis of Novel Degradable Biomedical Copolymers vol.54, pp.2, 2015, https://doi.org/10.1080/03602559.2014.935426
  2. Preparation and Characterization of PAN-based Superfined Carbon Fibers for Carbon-paper Applications vol.34, pp.12, 2012, https://doi.org/10.5012/bkcs.2013.34.12.3733
  3. Synthesis of Silver-doped Silica-complex Nanoparticles for Antibacterial Materials vol.35, pp.10, 2012, https://doi.org/10.5012/bkcs.2014.35.10.2979