DOI QR코드

DOI QR Code

The Synthesis of Cellulose-graft-poly (L-lactide) by Ring-opening Polymerization and the Study of Its Degradability

  • Dai, Lin (Institute of Materials Science and Technology, Beijing Forestry University) ;
  • Xiao, Shu (Institute of Materials Science and Technology, Beijing Forestry University) ;
  • Shen, Yue (Institute of Materials Science and Technology, Beijing Forestry University) ;
  • Qinshu, Baichuan (Institute of Materials Science and Technology, Beijing Forestry University) ;
  • He, Jing (Institute of Materials Science and Technology, Beijing Forestry University)
  • Received : 2012.06.14
  • Accepted : 2012.09.27
  • Published : 2012.12.20

Abstract

Cellulose-graft-poly (L-lactide) (cellulose-g-PLLA) was successfully prepared via ring-opening polymerization (ROP) by using 4-dimethylaminopyridine (DMAP) as an organic catalyst in an ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl). The structure and morphology of the polymer was characterized by nuclear magnetic resonance (NMR) and transmission electron microscope (TEM). From wide-angle X-ray powder diffraction (WAXD) and degradation test (by acid, alkaline, PBS and enzyme solution), changes in the crystalline structure as a result of degradation was also investigated. The results indicated that materials which have low degree of crystallinity showing higher degradability, however, in acid liquor, enzyme solution, alkaline liquor and PBS system, the degradation rate of the polymer decreased by the above sequence. Moreover, with the further increase of graft degree of this material, its degradation degree decreased.

Keywords

References

  1. Braganca, F. C.; Rosa, D. S. Polym. Ad. Technol. 2003, 14, 669. https://doi.org/10.1002/pat.381
  2. Wang, D. S.; Xuan, Y. N.; Huang, Y.; Shen, J. R. J. Appl. Polym. Sci. 2003, 89, 85. https://doi.org/10.1002/app.12033
  3. Lee, S. H.; Yoshioka, M.; Shiraishi, N. J. Appl. Polym. Sci. 2001, 81, 243. https://doi.org/10.1002/app.1435
  4. Teramoto, Y.; Ama, S.; Higeshiro, T.; Nishio, T. Macromol. Chem. Phys. 2004, 205, 1904. https://doi.org/10.1002/macp.200400160
  5. Goni, I.; Ferrero, M. C.; Jimenez-Castellanos, R. M.; Gurruchaga, M. Drug Dev. Ind. Pharm. 2002, 28, 1101. https://doi.org/10.1081/DDC-120014577
  6. Trejo-O'reilly, J. A.; Cavaille, J. Y.; Paillet, M.; Gandini, A.; Herrera- Franco, P. Polym. Compos. 2000, 21, 65. https://doi.org/10.1002/pc.10165
  7. Heinze, T.; Schwikal, K.; Barthel, S. Macromol. Biosci. 2005, 5, 520. https://doi.org/10.1002/mabi.200500039
  8. Wu, J.; Zhang, J.; Zhang, H.; He, J. S.; Ren, Q.; Guo, M. L. Biomacromolecules 2004, 5, 266. https://doi.org/10.1021/bm034398d
  9. Tetamoto, Y.; Yoshioka, M.; Shiraishi, N.; Nishio, Y. J. Appl. Polym. Sci. 2002, 84, 2621. https://doi.org/10.1002/app.10430
  10. Hatakeyama, H.; Yoshida, T.; Hatakeyama, T. J. Therm. Anal. Calorim. 2000, 59, 157. https://doi.org/10.1023/A:1010140129888
  11. Lee, S. H.; Yoshioka, M.; Shiraishi, N. J. Appl. Polym. Sci. 2001, 77, 2908.
  12. Videki, B.; Klebert, S.; Pukanszky, B. Eur. Polym. J. 2005, 41, 1699. https://doi.org/10.1016/j.eurpolymj.2005.03.002
  13. Schlechter, M. Biodegradable Polymer, 2001; Communications Co., Inc., Norwalk.
  14. Brostrom, J.; Boss, A.; Chronakis, I. S. Biomacromolecules 2004, 5, 1124. https://doi.org/10.1021/bm049920q
  15. Wang, F.; Bronich, T. K.; Kabanov, A. V.; Rauh, R. D.; Roovers, J. Bioconjugate Chem. 2005, 16, 397. https://doi.org/10.1021/bc049784m
  16. Ho, M. H.; Hou, L. T.; Tu, C. Y.; Hsieh, H. J.; Lai, J. Y.; Chen, W. J.; Wang, D. M. Macromol. Biosci. 2006, 6, 90. https://doi.org/10.1002/mabi.200500130
  17. Meng, F. L.; Zheng, S. X.; Zhang, W. A.; Li, H. Q.; Liang, Q. Macromolecules 2006, 39, 711. https://doi.org/10.1021/ma0518499
  18. Shen, D. W.; Huang, Y. Polymer. 2004, 45, 7091. https://doi.org/10.1016/j.polymer.2004.08.042
  19. Lonnberg, H.; Zhou, Q.; Brumer, H., 3rd; Teeri, T. T., Malmstrom, E.; Hult, A. Biomacromolecules 2006, 7, 2178. https://doi.org/10.1021/bm060178z
  20. Teramoto, Y.; Nishio, Y. Biomacromolecules 2004, 5, 407. https://doi.org/10.1021/bm034453i
  21. Vleek, P.; Janata, M.; Latalova, P.; Kri, J.; Eaadova, E.; Toman, L. Polymer. 2006, 47, 2587. https://doi.org/10.1016/j.polymer.2006.02.067
  22. Miyamoto, T.; Takahashi, S.; Ito, H.; Inagaki, H.; Nioshiki, Y. J. Biomed. Mater. Res. 1989, 23, 125. https://doi.org/10.1002/jbm.820230110
  23. Mayumi, A.; Kitaoka, T.; Wariishi, H. J. Appl. Polym. Sci. 2006, 102, 4358. https://doi.org/10.1002/app.24925
  24. Teramoto, Y.; Nishio, Y. Cellul. Commun. 2004, 11, 115.
  25. Teramoto, Y.; Nishio, Y. Biomacromolecules 2004, 5, 397. https://doi.org/10.1021/bm034452q
  26. Teramoto, Y.; Nishio, Y. Biomacromolecules 2004, 5, 407. https://doi.org/10.1021/bm034453i
  27. Xiao, S.; Xin, T. T.; He, J. For. Stud. China 2012, 13, 245.
  28. Xiao, S.; Yuan, T. Q.; Cao, H. B.; Dai, L.; Shen, Y. Bioresources 2012, 7, 1748.
  29. Xiao, S.; Dai, L.; He, J. Adv. Mater. Res. 2012, 476-478, 1897. https://doi.org/10.4028/www.scientific.net/AMR.476-478.1897
  30. Xin, T. T.; Yuan, T. Q.; Xiao, S.; He, J. Bioresources 2011, 6, 2941.
  31. Nederberg, F.; Connor, E. F.; Moller, M.; Glauser, T.; Hedrick, J. L. Angew Chem, Int. Ed. 2001, 40, 2712. https://doi.org/10.1002/1521-3773(20010716)40:14<2712::AID-ANIE2712>3.0.CO;2-Z
  32. Mayumi, A.; Kitaoka, T.; Wariishi, H. J. Appl. Polym. Sci. 2006, 102, 4358. https://doi.org/10.1002/app.24925
  33. Dong, H. Q.; Xu, Q.; Li, Y. Y.; Mo, S. B.; Cai, S. J.; Liu, L. J. Colloid Surface B 2008, 66, 26. https://doi.org/10.1016/j.colsurfb.2008.05.007
  34. Teramoto, Y.; Nishio, Y. Polymer 2003, 44, 2701. https://doi.org/10.1016/S0032-3861(03)00190-3
  35. Vert, M.; Mauduit, J.; Li, S. M. Biomaterials 1994, 15, 1209. https://doi.org/10.1016/0142-9612(94)90271-2

Cited by

  1. Degradation of graft polymer and blend based on cellulose and poly(L-lactide) vol.130, pp.4, 2013, https://doi.org/10.1002/app.39451
  2. Cellulose Dissolution and In Situ Grafting in a Reversible System using an Organocatalyst and Carbon Dioxide vol.8, pp.19, 2015, https://doi.org/10.1002/cssc.201500378
  3. Catalysis as an Enabling Science for Sustainable Polymers vol.118, pp.2, 2018, https://doi.org/10.1021/acs.chemrev.7b00329
  4. Recent Advances on Cellulose-Based Nano-Drug Delivery Systems: Design of Prodrugs and Nanoparticles vol.26, pp.14, 2012, https://doi.org/10.2174/0929867324666170711131353