DOI QR코드

DOI QR Code

The Synergistic Effect of Nitrogen and Ni2O3 over TiO2 Photocatalyst in the Degradation of 2,4,6-Trichlorophenol Under Visible Light

  • Hu, Shaozheng (Institute of Eco-environmental Sciences, Liaoning Shihua University) ;
  • Li, Fayun (Institute of Eco-environmental Sciences, Liaoning Shihua University) ;
  • Fan, Zhiping (Institute of Eco-environmental Sciences, Liaoning Shihua University)
  • Received : 2012.08.03
  • Accepted : 2012.09.17
  • Published : 2012.12.20

Abstract

The composite photocatalyst, N-$TiO_2$ loaded with $Ni_2O_3$, was prepared by $N_2$ plasma treatment. X-ray diffraction, X-ray fluorescence, $N_2$ adsorption, UV-vis spectroscopy, photoluminescence, and X-ray photoelectron spectroscopy were used to characterize the prepared $TiO_2$ samples. The results indicated that the band gap energy was decreased obviously by nitrogen doping, whereas loading of $Ni_2O_3$ did not influence the band gap and visible light absorption. The photocatalytic activities were tested in the degradation of 2,4,6-trichlorophenol (TCP) under visible light. The photocatalytic activity and stability of composite photocatalyst were much higher than that of catalyst modified with nitrogen or $Ni_2O_3$ alone. The synergistic effect of doping nitrogen and $Ni_2O_3$ over $TiO_2$ was investigated.

Keywords

References

  1. Wang, C. Y.; Bottcher, C.; Bahnemann, D. W.; Dohrmann, J. K. J. Mater. Chem. 2003, 13, 2322. https://doi.org/10.1039/b303716a
  2. Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Chem. Rev. 1995, 95, 69. https://doi.org/10.1021/cr00033a004
  3. Klosek, S.; Raftery, D. J. Phys. Chem. B. 2001, 105, 2815. https://doi.org/10.1021/jp004295e
  4. Yamashita, H.; Harada, M.; Misaka, J.; Takeuchi, M.; Ikeue, K.; Anpo, M. J. Photochem. Photobiol. A: Chem. 2002, 148, 257. https://doi.org/10.1016/S1010-6030(02)00051-5
  5. Choi, W.; Termin, A.; Hoffmann, M. R. J. Phys. Chem. 1994, 98, 13669. https://doi.org/10.1021/j100102a038
  6. Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, A.; Taga, Y. Science 2001, 293, 269. https://doi.org/10.1126/science.1061051
  7. Sun, H. J.; Liu, H. L.; Ma, J.; Wang, X. Y.; Wang, B.; Han, L. J. Hazard. Mater. 2008, 156, 552. https://doi.org/10.1016/j.jhazmat.2007.12.087
  8. Shi, Q.; Yang, D.; Jiang, Z. Y.; Li, J. J. Mol. Catal. B: Enzym. 2006, 43, 44. https://doi.org/10.1016/j.molcatb.2006.06.005
  9. Abe, R.; Sayama, K.; Domen, K.; Arakawa, H. Chem. Phys. Lett. 2001, 344, 339. https://doi.org/10.1016/S0009-2614(01)00790-4
  10. Zaleska, A.; Sobczak, J. W.; Grabowska, E.; Hupka, J. Appl. Catal. B: Environ. 2008, 78, 92. https://doi.org/10.1016/j.apcatb.2007.09.005
  11. Chatterjee, D. ; Mahata, A. Appl. Catal. B: Environ. 2001, 33, 119. https://doi.org/10.1016/S0926-3373(01)00170-9
  12. Wang, C. Y.; Liu, C. Y.; Zheng, X.; Chen, J.; Shen, T. Colloids Surf. A Physicochem. Eng. Asp. 1998, 131, 271. https://doi.org/10.1016/S0927-7757(97)00086-1
  13. Cao, Y.; Zhang, X.; Yang, W.; Du, H.; Bai, Y.; Li, T.; Yao, J. Chem. Mater. 2000, 12, 3445. https://doi.org/10.1021/cm0004432
  14. Soria, J.; Conesa, J. C.; Augugliaro, V.; Palmisano, L.; Schiavello, M.; Sclafani, A. J. Phys. Chem. 1991, 95, 274.
  15. Sakatani, Y.; Nunoshige, J.; Ando, H.; Okusako, K.; Koike, H.; Takata, T.; Kondo, J. N.; Hara, M.; Domen, K. Chem. Lett. 2003, 32, 1156. https://doi.org/10.1246/cl.2003.1156
  16. Zhao, W.; Ma, W. H.; Chen, C. C.; Zhao, J. C.; Shuai, Z. G. J. Am. Chem. Soc. 2004, 126, 4782. https://doi.org/10.1021/ja0396753
  17. Wei, C. H.; Tang, X. H.; Liang, J. R.; Tan, S. Y. J. Environ. Sci.- China 2007, 19, 90. https://doi.org/10.1016/S1001-0742(07)60015-1
  18. D'Olivera, J. C.; Al-sayed, G.; Pichat, P. Environ. Sci. Technol. 1990, 24, 990. https://doi.org/10.1021/es00077a007
  19. Keith, L. H.; Telliard, W. A. Environ. Sci. Technol. 1979, 13, 416. https://doi.org/10.1021/es60152a601
  20. Zou, Z. G.; Ye, J. H.; Sayama, K.; Arakawa, H. Nature 2001, 414, 625. https://doi.org/10.1038/414625a
  21. Shen, X. Z.; Liu, Z. C.; Xie, S. M.; Guo, J. J. Hazard. Mater. 2009, 162, 1193. https://doi.org/10.1016/j.jhazmat.2008.06.004
  22. Lin, J.; Lin, Y.; Liu, P.; Meziani, M. J.; Allard, L. F.; Sun, Y. P. J. Am. Chem. Soc. 2002, 124, 11514. https://doi.org/10.1021/ja0206341
  23. Yu, J. G.; Zhao, X. J.; Zhao, Q. N. Mater. Chem. Phys. 2001, 69, 25. https://doi.org/10.1016/S0254-0584(00)00291-1
  24. Xu, J. J.; Ao, Y. H.; Fu, D. G.; Yuan, C. W. J. Cryst. Growth 2008, 310, 4319. https://doi.org/10.1016/j.jcrysgro.2008.07.045
  25. Hu, S. Z.; Li, F. Y.; Fan, Z. P. Bull. Korean Chem. Soc. 2012, 33, 199. https://doi.org/10.5012/bkcs.2012.33.1.199
  26. Yamada, K.; Nakamura, H.; Matsushima, S.; Yamane, H.; Haishi, T.; Ohira, K.; Kumada, K. C. R. Chimie 2006, 9, 788. https://doi.org/10.1016/j.crci.2005.05.016
  27. Kosaku, K. J. Electron Spectrosc. Relat. Phenom. 1988, 46, 237. https://doi.org/10.1016/0368-2048(88)80022-7
  28. Oregan, B.; Gratzel, M. Nature 1991, 353, 737. https://doi.org/10.1038/353737a0
  29. Cong, Y.; Zhang, J.; Chen, F.; Anpo, M. J. Phys. Chem. C 2007, 111, 6976. https://doi.org/10.1021/jp0685030
  30. Ganesh, K. P.; Ruey-an, D. Appl. Catal. B: Environ. 2010, 100, 116. https://doi.org/10.1016/j.apcatb.2010.07.020
  31. Ganesh, K. P.; Ruey-an, D. Water Res. 2011, 45, 4198.
  32. Hu, S. Z.; Li, F. Y.; Fan, Z. P. Appl. Surf. Sci. 2011, 258, 1249. https://doi.org/10.1016/j.apsusc.2011.09.085
  33. Chen, X. F.; Wang, X. C.; Hou, Y. D.; Huang, J. H.; Wu, L.; Fu, X. Z. J. Catal. 2008, 255, 59. https://doi.org/10.1016/j.jcat.2008.01.025
  34. Rabani, J.; Yamashita, K.; Ushida, K.; Stark, J.; Kira, A. J. Phys. Chem. B 1998, 102, 1689. https://doi.org/10.1021/jp973411j
  35. Devi, L. G.; Kottam, N.; Murthy, B. N.; Kumar, S. G. J. Mol. Catal. A: Chem. 2010, 328, 44. https://doi.org/10.1016/j.molcata.2010.05.021
  36. Devi, L. G.; Kottam, N.; Kumar, N. S. G.; Raiashekhar, K. E. Cent. Eur. J. Chem. 2010, 8, 142. https://doi.org/10.2478/s11532-009-0115-y

Cited by

  1. Ni2O3 Decoration of WO3 Thin Film for High Sensitivity NH3 Gas Sensor vol.56, pp.9, 2015, https://doi.org/10.2320/matertrans.MA201572
  2. Ferrites as solar photocatalytic materials and their activities in solar energy conversion and environmental protection: A review vol.219, pp.None, 2021, https://doi.org/10.1016/j.solmat.2020.110786