DOI QR코드

DOI QR Code

Microfluidic Image Cytometry (μFIC) Assessments of Silver Nanoparticle Cytotoxicity

  • Park, Jonghoon (Laboratory of Nanoscale Characterization and Environmental Chemistry, Department of Chemistry, Hanyang University) ;
  • Yoon, Tae Hyun (Laboratory of Nanoscale Characterization and Environmental Chemistry, Department of Chemistry, Hanyang University)
  • Received : 2012.09.04
  • Accepted : 2012.09.12
  • Published : 2012.12.20

Abstract

Cytotoxicity assessment of silver nanoparticles (AgNPs) was performed using MTT-based microfluidic image cytometry (${\mu}FIC$). The $LC_{50}$ value of HeLa cells exposed to AgNPs in the microfluidic device was estimated as 46.7 mg/L, which is similar to that estimated by MTT-based IC for cells cultured in a 96 well plate (49.9 mg/L). These results confirm that the ${\mu}FIC$ approach can produce cytotoxicity data that is reasonably well-matched with that of the conventional 96 well plate system with much higher efficiency. This ${\mu}FIC$ method provides many benefits including ease of use and low cost, and is a more rapid in vitro cell based assay for AgNPs. This may aid in speeding up data acquisition in the field of nanosafety and make a significant contribution to the quantitative understanding of nanoproperty-toxicity relationships.

Keywords

References

  1. Nanotechnology Consumer Product Inventory. Washington DC: Projecton Emerging Nanotechnology. Woodrow Wilson International Center for Scholars. Abailable at http://www.nanotechproject.org/ inventories/consumer/)
  2. George, S.; Pokhrel, S.; Xia, T.; Gilbert, B.; Ji, Z.; Schowalter, M.; Rosenauer, A.; Damoiseaux, R.; Bradley, K. A.; Madler, L.; Nel, A. E. ACS Nano 2010, 4, 15. https://doi.org/10.1021/nn901503q
  3. Abraham, V. C.; Taylor, D. L.; Haskins, J. R. Trends in Biotechnology 2004, 22, 15. https://doi.org/10.1016/j.tibtech.2003.10.012
  4. Sundberg, S. A. Curr. Opin. Biotechnol. 2000, 11, 47. https://doi.org/10.1016/S0958-1669(99)00051-8
  5. El-Ali, J.; Sorger, P. K.; Jensen, K. F. Nature 2006, 442, 403. https://doi.org/10.1038/nature05063
  6. Ye, N. N.; Qin, J. H.; Shi, W. W.; Liu, X.; Lin, B. C. Lab Chip 2007, 7, 1696. https://doi.org/10.1039/b711513j
  7. Ye, N. N.; Qin, J. H.; Shi, W. W.; Lin, B. C. Electrophoresis 2007, 28, 1146. https://doi.org/10.1002/elps.200600450
  8. Siyan, W.; Feng, Y.; Lichuan, Z.; Jiarui, W.; Yingyan, W.; Li, J.; Bingcheng, L.; Qi, W. J. Pharm. Biomed. Anal. 2009, 49, 806. https://doi.org/10.1016/j.jpba.2008.12.021
  9. Mahto, S. K.; Yoon, T. H.; Shin, H.; Rhee, S. W. Biomed. Microdevices 2009, 11, 401. https://doi.org/10.1007/s10544-008-9246-8
  10. Hirono, T.; Arimoto, H.; Okawa, S.; Yamada, Y. Meas. Sci. & Technol. 2008, 19, 025401. https://doi.org/10.1088/0957-0233/19/2/025401
  11. Cheong, R.; Wang, C. J.; Levchenko, A. Sci. Signaling 2009, 2, pl2. https://doi.org/10.1126/scisignal.275pl2
  12. Kim, M. J.; Lim, K. H.; Yoo, H. J.; Yoon, T. H. Lab Chip 2010, 10, 415. https://doi.org/10.1039/b920890a
  13. Lim, K. H.; Park, J.; Rhee, S. W.; Yoon, T. H. Cytom. Part A 2012, 81A, 691. https://doi.org/10.1002/cyto.a.22079
  14. Dertinger, S. K. W.; Chiu, D. T.; Jeon, N. L.; Whitesides, G. M. Anal. Chem. 2001, 73, 1240. https://doi.org/10.1021/ac001132d

Cited by

  1. nanoparticles using flow cytometry combined with X-ray fluorescence measurements vol.85, pp.9, 2014, https://doi.org/10.1002/cyto.a.22481
  2. Microfluidic cell chips for high-throughput drug screening vol.8, pp.9, 2016, https://doi.org/10.4155/bio-2016-0028
  3. The Use of Microfluidics in Cytotoxicity and Nanotoxicity Experiments vol.8, pp.5, 2017, https://doi.org/10.3390/mi8040124
  4. Effects of Ag Nanoparticle Flow Rates on the Progress of the Cell Cycle Under Continuously Flowing "Dynamic" Exposure Conditions vol.35, pp.1, 2014, https://doi.org/10.5012/bkcs.2014.35.1.123
  5. Real-time Monitoring of Colloidal Nanoparticles using Light Sheet Dark-field Microscopy Combined with Microfluidic Concentration Gradient Generator (μFCGG-LSDFM) vol.35, pp.2, 2012, https://doi.org/10.5012/bkcs.2014.35.2.365
  6. Multiparameter toxicity screening on a chip: Effects of UV radiation and titanium dioxide nanoparticles on HaCaT cells vol.13, pp.4, 2012, https://doi.org/10.1063/1.5113729