References
- Nanotechnology Consumer Product Inventory. Washington DC: Projecton Emerging Nanotechnology. Woodrow Wilson International Center for Scholars. Abailable at http://www.nanotechproject.org/ inventories/consumer/)
- George, S.; Pokhrel, S.; Xia, T.; Gilbert, B.; Ji, Z.; Schowalter, M.; Rosenauer, A.; Damoiseaux, R.; Bradley, K. A.; Madler, L.; Nel, A. E. ACS Nano 2010, 4, 15. https://doi.org/10.1021/nn901503q
- Abraham, V. C.; Taylor, D. L.; Haskins, J. R. Trends in Biotechnology 2004, 22, 15. https://doi.org/10.1016/j.tibtech.2003.10.012
- Sundberg, S. A. Curr. Opin. Biotechnol. 2000, 11, 47. https://doi.org/10.1016/S0958-1669(99)00051-8
- El-Ali, J.; Sorger, P. K.; Jensen, K. F. Nature 2006, 442, 403. https://doi.org/10.1038/nature05063
- Ye, N. N.; Qin, J. H.; Shi, W. W.; Liu, X.; Lin, B. C. Lab Chip 2007, 7, 1696. https://doi.org/10.1039/b711513j
- Ye, N. N.; Qin, J. H.; Shi, W. W.; Lin, B. C. Electrophoresis 2007, 28, 1146. https://doi.org/10.1002/elps.200600450
- Siyan, W.; Feng, Y.; Lichuan, Z.; Jiarui, W.; Yingyan, W.; Li, J.; Bingcheng, L.; Qi, W. J. Pharm. Biomed. Anal. 2009, 49, 806. https://doi.org/10.1016/j.jpba.2008.12.021
- Mahto, S. K.; Yoon, T. H.; Shin, H.; Rhee, S. W. Biomed. Microdevices 2009, 11, 401. https://doi.org/10.1007/s10544-008-9246-8
- Hirono, T.; Arimoto, H.; Okawa, S.; Yamada, Y. Meas. Sci. & Technol. 2008, 19, 025401. https://doi.org/10.1088/0957-0233/19/2/025401
- Cheong, R.; Wang, C. J.; Levchenko, A. Sci. Signaling 2009, 2, pl2. https://doi.org/10.1126/scisignal.275pl2
- Kim, M. J.; Lim, K. H.; Yoo, H. J.; Yoon, T. H. Lab Chip 2010, 10, 415. https://doi.org/10.1039/b920890a
- Lim, K. H.; Park, J.; Rhee, S. W.; Yoon, T. H. Cytom. Part A 2012, 81A, 691. https://doi.org/10.1002/cyto.a.22079
- Dertinger, S. K. W.; Chiu, D. T.; Jeon, N. L.; Whitesides, G. M. Anal. Chem. 2001, 73, 1240. https://doi.org/10.1021/ac001132d
Cited by
- nanoparticles using flow cytometry combined with X-ray fluorescence measurements vol.85, pp.9, 2014, https://doi.org/10.1002/cyto.a.22481
- Microfluidic cell chips for high-throughput drug screening vol.8, pp.9, 2016, https://doi.org/10.4155/bio-2016-0028
- The Use of Microfluidics in Cytotoxicity and Nanotoxicity Experiments vol.8, pp.5, 2017, https://doi.org/10.3390/mi8040124
- Effects of Ag Nanoparticle Flow Rates on the Progress of the Cell Cycle Under Continuously Flowing "Dynamic" Exposure Conditions vol.35, pp.1, 2014, https://doi.org/10.5012/bkcs.2014.35.1.123
- Real-time Monitoring of Colloidal Nanoparticles using Light Sheet Dark-field Microscopy Combined with Microfluidic Concentration Gradient Generator (μFCGG-LSDFM) vol.35, pp.2, 2012, https://doi.org/10.5012/bkcs.2014.35.2.365
- Multiparameter toxicity screening on a chip: Effects of UV radiation and titanium dioxide nanoparticles on HaCaT cells vol.13, pp.4, 2012, https://doi.org/10.1063/1.5113729