DOI QR코드

DOI QR Code

Morphology Controlled Synthesis of Nanostructured Bi2Te3

  • Kim, Hee Jin (Department of Materials Science and Engineering, Yonsei University) ;
  • Han, Mi-Kyung (Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Kim, Ha-Young (Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Lee, Wooyoung (Department of Materials Science and Engineering, Yonsei University) ;
  • Kim, Sung-Jin (Department of Chemistry and Nano Science, Ewha Womans University)
  • Received : 2012.07.25
  • Accepted : 2012.09.05
  • Published : 2012.12.20

Abstract

Nanostructured thermoelectric bismuth telluride ($Bi_2Te_3$) powders with various morphologies, such as nanoplates, nanorods, and nanotubes, were prepared by a hydrothermal method based on the reaction between $BiCl_3$, Te, and sodium ethylenediaminetetraacetate ($Na_2$-EDTA) at 150, 180, and $210^{\circ}C$. The products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and selected area electron diffraction (SAED). The effect of reaction temperature on the morphology of the $Bi_2Te_3$ particles was investigated, and the possible mechanism of morphology control was proposed.

Keywords

References

  1. Kanatzidis, M. G. Chem. Mater. 2010, 22, 648. https://doi.org/10.1021/cm902195j
  2. enkatasubramanian, R.; Siivola, E.; Colpitts, T.; Quinn, B. O. Nature 2001, 413, 597. https://doi.org/10.1038/35098012
  3. Hochbaum, A. I.; Chen, R.; Delgado, R. D.; Liang, W.; Garnett, E. C.; Najarian, M.; Majumdar, A.; Yang, P. Nature 2008, 451, 163. https://doi.org/10.1038/nature06381
  4. Hsu, K. F.; Loo, S.; Guo, F.; Chen, W.; Dyck, J. S.; Uher, C.; Hogan, T.; Polychroniadis, E. K.; Kanatzidis, M. G. Science 2004, 303, 818. https://doi.org/10.1126/science.1092963
  5. Hicks, L. D.; Dresselhaus, M. S. Phys. Rev. B 1993, 47, 12727. https://doi.org/10.1103/PhysRevB.47.12727
  6. Ota, J. R.; Roy, P.; Srivastava, S. K.; Popovitz-Biro, R.; Tenne, R. Nanotechnology 2006, 17, 1700. https://doi.org/10.1088/0957-4484/17/6/026
  7. Wang, W.; Zhang, G. Q.; Li, X. G. J. Phys. Chem. C 2008, 112, 15190. https://doi.org/10.1021/jp803207r
  8. Xiao, F.; Yoo, B.; Lee, K. H.; Myung, N. V. J. Am. Ceram. Soc. 2007, 129, 10068. https://doi.org/10.1021/ja073032w
  9. Jiang, Y.; Zhu, Y. J. J. Cryst. Growth 2007, 306, 351. https://doi.org/10.1016/j.jcrysgro.2007.05.012
  10. Zhang, G. Q.; Wang, W.; Lu, X. L.; Li, X. G. Cryst. Growth Des. 2009, 9, 145. https://doi.org/10.1021/cg7012528
  11. Salavati-Niasari, M.; Bazarganipour, M.; Davar, F. J. Alloys Compd. 2010, 489, 530. https://doi.org/10.1016/j.jallcom.2009.09.101
  12. JCPDS-ICDD 1997, International Centre for Diffraction Data, 12 Campus Boulevard, Newtown Square, PA 19073-3273, U.S.A.
  13. Deng, Y.; Nan, C. W.; Wei, G. D.; Guo, L.; Lin, Y. H. Chem. Phys. Lett. 2003, 374, 410. https://doi.org/10.1016/S0009-2614(03)00783-8
  14. Lu, W. G.; Ding, Y.; Chen, Y. X.; Wang, Z. L.; Fang, J. Y. J. Am. Chem. Soc. 2005, 127, 10112. https://doi.org/10.1021/ja052286j
  15. Deng, Y.; Nan, C.-W.; Wei, G.-D.; Guo, L.; Lin, Y.-H. Chem. Phys. Lett. 2003, 374, 410. https://doi.org/10.1016/S0009-2614(03)00783-8
  16. Zhao, X. B.; Ji, X. H.; Zhang, Y. H.; Cao, G. S.; Tu, J. P. Appl. Phys. A 2005, 80, 1567. https://doi.org/10.1007/s00339-004-2956-8
  17. Fan, X. A.; Yang, J. Y.; Xie, Z.; Li, K.; Zhu, W.; Duan, X. K.; Xiao, C. J.; Zhang, Q. Q. J. Phys. D: Appl. Phys. 2007, 40, 5975. https://doi.org/10.1088/0022-3727/40/19/029
  18. Kirchner, S. B. Inorganic Syntheses 1957, 5, 186. https://doi.org/10.1002/9780470132364.ch52
  19. Wang, Z.; Wang, F.-Q.; Chen, H.; Zhu, L.; Yu, H.-J.; Jian, X.-Y. J. Alloys Compd. 2010, 492, 50. https://doi.org/10.1016/j.jallcom.2009.11.155

Cited by

  1. Thermoelectric Properties of Bi2Te3 Nanocrystals with Diverse Morphologies Obtained via Modified Hydrothermal Method vol.46, pp.5, 2017, https://doi.org/10.1007/s11664-016-5104-2
  2. Synthesis of PAMAM dendrimer and its derivative PAMOL: Determination of thermophysical properties by DFT vol.55, pp.7, 2018, https://doi.org/10.1080/10601325.2018.1481345
  3. Aqueous Chemical Synthesis and Consolidation of Size-Controlled Bi2Te3 Nanoparticles for Low-Cost and High-Performance Thermoelectric Materials pp.1543-186X, 2019, https://doi.org/10.1007/s11664-019-06935-y
  4. Electrochemical reaction mechanism for Bi2Te3-based anode material in highly durable all solid-state lithium-ion batteries vol.31, pp.19, 2012, https://doi.org/10.1007/s10854-020-04195-9
  5. Monitoring the multiphasic evolution of bismuth telluride nanoplatelets vol.22, pp.45, 2012, https://doi.org/10.1039/d0ce00719f
  6. The multi-dimensional approach to synergistically improve the performance of inorganic thermoelectric materials: A critical review vol.14, pp.4, 2012, https://doi.org/10.1016/j.arabjc.2021.103103
  7. Minute-Made, High-Efficiency Nanostructured Bi2Te3 via High-Throughput Green Solution Chemical Synthesis vol.11, pp.8, 2021, https://doi.org/10.3390/nano11082053