References
- Kanatzidis, M. G. Chem. Mater. 2010, 22, 648. https://doi.org/10.1021/cm902195j
- enkatasubramanian, R.; Siivola, E.; Colpitts, T.; Quinn, B. O. Nature 2001, 413, 597. https://doi.org/10.1038/35098012
- Hochbaum, A. I.; Chen, R.; Delgado, R. D.; Liang, W.; Garnett, E. C.; Najarian, M.; Majumdar, A.; Yang, P. Nature 2008, 451, 163. https://doi.org/10.1038/nature06381
- Hsu, K. F.; Loo, S.; Guo, F.; Chen, W.; Dyck, J. S.; Uher, C.; Hogan, T.; Polychroniadis, E. K.; Kanatzidis, M. G. Science 2004, 303, 818. https://doi.org/10.1126/science.1092963
- Hicks, L. D.; Dresselhaus, M. S. Phys. Rev. B 1993, 47, 12727. https://doi.org/10.1103/PhysRevB.47.12727
- Ota, J. R.; Roy, P.; Srivastava, S. K.; Popovitz-Biro, R.; Tenne, R. Nanotechnology 2006, 17, 1700. https://doi.org/10.1088/0957-4484/17/6/026
- Wang, W.; Zhang, G. Q.; Li, X. G. J. Phys. Chem. C 2008, 112, 15190. https://doi.org/10.1021/jp803207r
- Xiao, F.; Yoo, B.; Lee, K. H.; Myung, N. V. J. Am. Ceram. Soc. 2007, 129, 10068. https://doi.org/10.1021/ja073032w
- Jiang, Y.; Zhu, Y. J. J. Cryst. Growth 2007, 306, 351. https://doi.org/10.1016/j.jcrysgro.2007.05.012
- Zhang, G. Q.; Wang, W.; Lu, X. L.; Li, X. G. Cryst. Growth Des. 2009, 9, 145. https://doi.org/10.1021/cg7012528
- Salavati-Niasari, M.; Bazarganipour, M.; Davar, F. J. Alloys Compd. 2010, 489, 530. https://doi.org/10.1016/j.jallcom.2009.09.101
- JCPDS-ICDD 1997, International Centre for Diffraction Data, 12 Campus Boulevard, Newtown Square, PA 19073-3273, U.S.A.
- Deng, Y.; Nan, C. W.; Wei, G. D.; Guo, L.; Lin, Y. H. Chem. Phys. Lett. 2003, 374, 410. https://doi.org/10.1016/S0009-2614(03)00783-8
- Lu, W. G.; Ding, Y.; Chen, Y. X.; Wang, Z. L.; Fang, J. Y. J. Am. Chem. Soc. 2005, 127, 10112. https://doi.org/10.1021/ja052286j
- Deng, Y.; Nan, C.-W.; Wei, G.-D.; Guo, L.; Lin, Y.-H. Chem. Phys. Lett. 2003, 374, 410. https://doi.org/10.1016/S0009-2614(03)00783-8
- Zhao, X. B.; Ji, X. H.; Zhang, Y. H.; Cao, G. S.; Tu, J. P. Appl. Phys. A 2005, 80, 1567. https://doi.org/10.1007/s00339-004-2956-8
- Fan, X. A.; Yang, J. Y.; Xie, Z.; Li, K.; Zhu, W.; Duan, X. K.; Xiao, C. J.; Zhang, Q. Q. J. Phys. D: Appl. Phys. 2007, 40, 5975. https://doi.org/10.1088/0022-3727/40/19/029
- Kirchner, S. B. Inorganic Syntheses 1957, 5, 186. https://doi.org/10.1002/9780470132364.ch52
- Wang, Z.; Wang, F.-Q.; Chen, H.; Zhu, L.; Yu, H.-J.; Jian, X.-Y. J. Alloys Compd. 2010, 492, 50. https://doi.org/10.1016/j.jallcom.2009.11.155
Cited by
- Thermoelectric Properties of Bi2Te3 Nanocrystals with Diverse Morphologies Obtained via Modified Hydrothermal Method vol.46, pp.5, 2017, https://doi.org/10.1007/s11664-016-5104-2
- Synthesis of PAMAM dendrimer and its derivative PAMOL: Determination of thermophysical properties by DFT vol.55, pp.7, 2018, https://doi.org/10.1080/10601325.2018.1481345
- Aqueous Chemical Synthesis and Consolidation of Size-Controlled Bi2Te3 Nanoparticles for Low-Cost and High-Performance Thermoelectric Materials pp.1543-186X, 2019, https://doi.org/10.1007/s11664-019-06935-y
- Electrochemical reaction mechanism for Bi2Te3-based anode material in highly durable all solid-state lithium-ion batteries vol.31, pp.19, 2012, https://doi.org/10.1007/s10854-020-04195-9
- Monitoring the multiphasic evolution of bismuth telluride nanoplatelets vol.22, pp.45, 2012, https://doi.org/10.1039/d0ce00719f
- The multi-dimensional approach to synergistically improve the performance of inorganic thermoelectric materials: A critical review vol.14, pp.4, 2012, https://doi.org/10.1016/j.arabjc.2021.103103
- Minute-Made, High-Efficiency Nanostructured Bi2Te3 via High-Throughput Green Solution Chemical Synthesis vol.11, pp.8, 2021, https://doi.org/10.3390/nano11082053