DOI QR코드

DOI QR Code

Rapid Determination of Volatile Organic Compounds in Human Whole Blood Using Static Headspace Sampling with Gas Chromatography and Mass Spectrometry

  • Lee, Ji-Young (Biomolecules Function Research Center, Korea Institute of Science and Technology) ;
  • Kim, Seungki (Biomolecules Function Research Center, Korea Institute of Science and Technology) ;
  • Lee, Jong-Tae (Department of Environmental Health, Korea University) ;
  • Choi, Jong-Ho (Department of Chemistry, Korea University) ;
  • Lee, Jeongae (Biomolecules Function Research Center, Korea Institute of Science and Technology) ;
  • Pyo, Heesoo (Biomolecules Function Research Center, Korea Institute of Science and Technology)
  • Received : 2011.10.15
  • Accepted : 2012.09.04
  • Published : 2012.12.20

Abstract

Headspace (HS) and headspace solid-phase microextraction (HS-SPME) were studied for extracting volatile organic compounds (VOCs) from whole blood, with chemical and instrumental variables being optimized for maximum sensitivity: incubation at $60^{\circ}C$, equilibration for 30 min, pH 11, and 2 mL injection volume. Both techniques provided accurate analyses, with detection limits of 0.05-0.1 ng $mL^{-1}$ and 0.05-0.5 ng $mL^{-1}$. HS showed better sensitivity, reproducibility, and analysis times than HS-SPME. Overall levels of chloroform in whole blood were found to be 0.05-5.84 ng $mL^{-1}$; detected levels of benzene were 0.05-2.20 ng $mL^{-1}$.

Keywords

References

  1. Serrano, A.; Gallego, M. J. Chromatogr. A 2006, 1118, 261. https://doi.org/10.1016/j.chroma.2006.03.095
  2. Lilly, P. D.; Ross, T. M.; Pegram, R. A. Fundam. Appl. Toxicol. 1997, 40, 101. https://doi.org/10.1006/faat.1997.2372
  3. Theriault, G.; Allard, P. J. Occup. Med. 1981, 23, 671. https://doi.org/10.1097/00043764-198110000-00009
  4. Huff, J. Int J. Occup. Environ. Health 2007, 13, 213. https://doi.org/10.1179/oeh.2007.13.2.213
  5. Rana, S. V.; Verma, Y. J. Environ. Biol. 2005, 26, 157.
  6. Chapman, D.; Moore, T.; Michener, S.; Powis, G. Drug. Metab. Dispos. 1990, 18, 929.
  7. Hanioka, H.; Hamamura, M.; Kakino, K.; Ogata, H.; Jinno, H.; Takahashi, A.; Nishimura, T.; Ando, M. Xenobiotica. 1995, 25, 1207. https://doi.org/10.3109/00498259509046677
  8. Van Doorn, R.; Leijdekkers, C.; Bos, R.; Brouns, R.; Henderson, P. J. Appl. Toxicol. 1981, 1, 236. https://doi.org/10.1002/jat.2550010411
  9. Wolf, M. A.; Rowe, V. K.; McCollister, D. D.; Hollingsworth, R. L.; Oyen, F. Arch. Ind. Health 1956, 14, 387.
  10. Caro, J.; Serrano, A.; Gallego, M. J. Chromatogr. B 2007, 848, 277. https://doi.org/10.1016/j.jchromb.2006.10.034
  11. Schnable, J. G.; Dussert, B.; Suffet, I. H.; Hertz, C. D. J. Chromatogr. 1990, 513, 47. https://doi.org/10.1016/S0021-9673(01)89423-1
  12. Prosen, H.; Zupancic-Kralj, L. Trends Anal. Chem. 1999, 18, 272. https://doi.org/10.1016/S0165-9936(98)00109-5
  13. Florez Menendez, J. C.; Fernandez Sanchez, M. L.; Sanchez Ura, J. E.; Fernandez Martnez, E.; Sanz-Medel, A. Anal. Chim. Acta 2000, 415, 9. https://doi.org/10.1016/S0003-2670(00)00862-X
  14. Boyd-Boland, A. A.; Magdic, S.; Pawliszyn, J. Analyst 1996, 121, 929. https://doi.org/10.1039/an9962100929
  15. Magdic, S.; Pawliszyn, J. J. Chromatogr. A 1996, 723, 111. https://doi.org/10.1016/0021-9673(95)00857-8
  16. Krska, R.; Taga, K.; Kellner, R. Appl. Spectrosc. 1993, 47, 1484. https://doi.org/10.1366/0003702934067423
  17. Page, B. D.; Lacroix, G. J. Chromatogr. A. 1997, 757, 173. https://doi.org/10.1016/S0021-9673(96)00687-5
  18. Poon, K.; Lam, P. K. S.; Lam, M. H. W. Anal. Chim. Acta 1999, 396, 303. https://doi.org/10.1016/S0003-2670(99)00447-X
  19. Potter, D. W.; Pawliszyn, J. Environ. Sci. Technol. 1994, 28, 298. https://doi.org/10.1021/es00051a017
  20. Zhang, Z.; Pawliszyn, J. J. High Resolution Chromatogr. 1993, 16, 689. https://doi.org/10.1002/jhrc.1240161203
  21. Buchholz, K. D.; Pawliszyn, J. Anal. Chem. 1994, 66, 160. https://doi.org/10.1021/ac00073a027
  22. Out, E.; Pawliszyn, J. J. Microchim. Acta 1993, 112, 41. https://doi.org/10.1007/BF01243319
  23. Lespes, G.; Desauziers, V.; Potin-Gautier, M. J. Chromatogr. A 1998, 826, 67. https://doi.org/10.1016/S0021-9673(98)00716-X
  24. Cai, Y.; Bayona, J. J. Chromatogr. 1995, 696, 113. https://doi.org/10.1016/0021-9673(94)01177-G
  25. Witschi, C.; Doelker, E. Eur. J. Pharm. Biopharm. 1997, 43, 215. https://doi.org/10.1016/S0939-6411(96)00037-9
  26. Penton, Z. J. High Resolution Chromatogr. 1992, 15, 834. https://doi.org/10.1002/jhrc.1240151212
  27. Kolb, B.; Ettre, L. S. Static Headspace-Gas Chromatography; Wiley VCH: New York, 1997.
  28. Sakata, S. K.; Taniguchi, S.; Rodrigues, D. F.; Urano, M. E.; Wandermuren, M. N.; Pellizari, V. H.; Comasseto, J. V. J. Chromatogr. A 2004, 1048, 67. https://doi.org/10.1016/j.chroma.2004.07.021
  29. Voice, T. C. Environ. Sci. Technol. 1993, 27, 709. https://doi.org/10.1021/es00041a014
  30. Schroers, H. J.; Jermann, E.; Begerow, J.; Hajimiragha, H.; Chiarotti-Omar, A. M.; Dunemann, L. Analyst 1998, 123, 715. https://doi.org/10.1039/a706226e

Cited by

  1. Evaluation of matrix effects in the analysis of volatile organic compounds in whole blood with solid-phase microextraction vol.36, pp.23, 2013, https://doi.org/10.1002/jssc.201300636
  2. Chloroform ingestion causing severe gastrointestinal injury, hepatotoxicity and dermatitis confirmed with plasma chloroform concentrations vol.55, pp.2, 2017, https://doi.org/10.1080/15563650.2016.1249795
  3. Simultaneous Determination of Alkoxyalcohols in Wet Wipes Using Static Headspace Gas Chromatography and Mass Spectrometry vol.35, pp.11, 2012, https://doi.org/10.5012/bkcs.2014.35.11.3280
  4. Rapid Differentiation of Three Lavender Varieties Grown in China by Static Headspace Coupled with Gas Chromatography-Mass Spectrometry vol.21, pp.6, 2012, https://doi.org/10.1080/0972060x.2019.1578698
  5. Static Headspace Analysis and Its Current Status vol.75, pp.1, 2020, https://doi.org/10.1134/s106193482001013x