DOI QR코드

DOI QR Code

Synthesis and Biological Activities of Some New 3,6-Disubstituted 1,2,4-Triazolo[3,4-b]1,3,4-thiadiazole Derivatives

  • Received : 2012.06.01
  • Accepted : 2012.09.03
  • Published : 2012.12.20

Abstract

A series of aromatic hydrazides 3a-j were prepared by refluxing esters 2a-j with hydrazine hydrate in methanol, which were prepared by the esterification of 1a-j. Acetohydrazides 3a-j upon treatment with carbon disulfide and methanolic potassium hydroxide yielded potassium dithiocarbazate salts 4a-j, which on refluxing with hydrazine hydrate yielded substituted 4-amino-5-aryl-3H-1,2,4-triazole-3-thiones 5a-j. The target compounds 6a-j were synthesized by condensing furan-3-carboxylic acid in the presence of polyphosphoric acid under reflux. The structures of newly synthesized compounds were characterized by IR, $^1H$ NMR, $^{13}C$ NMR, elemental analysis and mass spectrometric studies. All the synthesized compounds were screened for their urease, acetylcholine esterase inhibition, antioxidant and alkaline phosphatase inhibition activity. Almost all of the compounds 6a-j showed good to excellent activities against urease and acetylcholine esterase more than the reference drugs. Compounds 6f and 6g were more potent scavenger of free radicals than the reference n-propyl gallate. Compound 6b and 6h showed excellent activities of alkaline phosphatase as compare to the reference $KH_2PO_4$.

Keywords

References

  1. Mobley, H. L.; Hausinger, R. P. Microbiol. Rev. 1989, 53, 85.
  2. Karplus, P. A.; Pearson, M. A.; Hausinger, R. P. Acc. Chem. Res. 1997, 30, 330. https://doi.org/10.1021/ar960022j
  3. Collins, C. M.; D'Orazio, S. E. F. Mol. Microbiol. 1993, 9, 907. https://doi.org/10.1111/j.1365-2958.1993.tb01220.x
  4. Montecucco, C.; Rappuoli, R. Nat. Rev. Mol. Cell Biol. 2001, 2, 457. https://doi.org/10.1038/35073084
  5. Hausinger, R. P.; Karplus, P. A. Handbook of Metalloproteins; Messerschmidt, A., Hubber, R., Poulos, T., Wieghardt, K., Eds.; Wiley: Chichester, 2001.
  6. Zhengping, W.; Van Cleemput, O.; Demeyer, P.; Baert, L. Biol. Fertil. Soils. 1991, 11, 41.
  7. Changeux, J. P. Mol. Pharmacol. 1966, 2, 369.
  8. Epstein, D. J.; Berman, H. A.; Taylor, P. Biochem. 1979, 18, 4749. https://doi.org/10.1021/bi00588a040
  9. Mallender, W. D.; Szeglets, T.; Rosenberry, T. L. J. Biol. Chem. 1999, 274, 8491. https://doi.org/10.1074/jbc.274.13.8491
  10. Szeglets, T.; Mallender, W. D.; Thomas, P. J.; Rosenberry, T. L. Biochem. 1999, 38, 122. https://doi.org/10.1021/bi9813577
  11. Abramov, A. Y.; Canvari, L.; Duchen, M. R. J. Neurosci. 2003, 15, 5088.
  12. Butterfield, D. A. Chem. Res. Toxicol. 1997, 10, 495. https://doi.org/10.1021/tx960130e
  13. Marchbanks, R. M. J. Neurochem. 1982, 39, 9. https://doi.org/10.1111/j.1471-4159.1982.tb04695.x
  14. Taylor, P.; Gilman, A. G.; Goodman, L. S.; Murad, F. Pharmacological Basis of Therapeutics; MacMillan: New York, 1985.
  15. Ellis, J. M. J. Am. Osteopth Assoc. 2005, 105, 145.
  16. Farlow, M.; Gracon, S. I.; Hershey, L. A.; Lewis, K. W.; Sadowsky, C. H.; Dolan-Ureno, J. JAMA. 1992, 268, 2523. https://doi.org/10.1001/jama.1992.03490180055026
  17. Lahiri, D. K.; Farlow, M. R.; Grieg, N. H.; Sambamurti, K. Drug Dev. Res. 2002, 56, 267. https://doi.org/10.1002/ddr.10081
  18. Rogers, S. L.; Farlow, M. R.; Doody, R. S.; Mohs, R.; Friedhoff, L. T. Neurology 1998, 50, 136. https://doi.org/10.1212/WNL.50.1.136
  19. Uchida, K. Free Rad. Biol. Med. 2000, 28, 1685. https://doi.org/10.1016/S0891-5849(00)00226-4
  20. Cadenas, E.; Davies, K. J. A. Free Rad. Biol. Med. 2000, 29, 222. https://doi.org/10.1016/S0891-5849(00)00317-8
  21. Kinsella, J. E.; Frankel, E.; German, B.; Kanner, J. J. Food Technol. 1993, 47, 85.
  22. Singh, N.; Rajini, P. S. Food Chem. 2004, 85, 611. https://doi.org/10.1016/j.foodchem.2003.07.003
  23. Prior, R. L.; Wu, X.; Schaichs, K. J. Agric. Food Chem. 2005, 53, 4290. https://doi.org/10.1021/jf0502698
  24. Le Du, M. H.; Millan, J. L. J. Biol. Chem. 2002, 277, 49808. https://doi.org/10.1074/jbc.M207394200
  25. Zhang, L.; Balcerzak, M.; Radisson, J.; Thouverey, C.; Pikula, S.; Azzar, G.; Buchet, R. J. Biol. Chem. 2005, 280, 37289. https://doi.org/10.1074/jbc.M504260200
  26. Coburn, S. P.; Mahuren, J. D.; Jain, M.; Zubovic, Y.; Wortsman, J. J. Clin. Endocr. Metab. 1998, 83, 3951. https://doi.org/10.1210/jc.83.11.3951
  27. Sarrouilhe, D.; Lalegerie, P.; Baudry, M. Biochim. Biophys. Acta 1992, 1118, 116. https://doi.org/10.1016/0167-4838(92)90137-3
  28. Muda, M.; Rao, N. N.; Torriani, A. J. Bacterio. 1992, 174, 8057.
  29. Li, M.; Ding, W.; Baruah, B.; Crans, D. C.; Wang, R. J. Inorg. Biochem. 2008, 102, 1846. https://doi.org/10.1016/j.jinorgbio.2008.06.007
  30. Song, C.; Xuhong, Q.; Gonghua, S.; Qingchun, H. J. Flour. Chem. 2002, 117, 63. https://doi.org/10.1016/S0022-1139(02)00172-0
  31. Hebert, N.; Hannah, A. L.; Sutton, S. C. Tetrahedron Lett. 1999, 40, 8547. https://doi.org/10.1016/S0040-4039(99)01826-2
  32. Weatherburn, M. W. Anal. Chem. 1967, 39, 971. https://doi.org/10.1021/ac60252a045
  33. Ellman, G. L.; Courtney, K. D.; Andres, V.; Feather-Stone, R. M. Biochem. Pharmacol. 1961, 7, 88. https://doi.org/10.1016/0006-2952(61)90145-9
  34. Choudhary, M. I.; Begum, A.; Abbaskhan, A.; Musharraf, S. G.; Ejaz, A. Chem. Biodiver. 2008, 5, 2676. https://doi.org/10.1002/cbdv.200890221
  35. Lee, S. K.; Mbwambo, Z. H.; Chung, H.; Luyengi, L.; Gamez, E. J. Mehta, R. G.; Kinghorn, A. D.; Pezzuto, J. M. Comb. Chem. High Throughput Screen. 1998, 1, 35.
  36. Molyneux, P. J. Sci. Technol. 2004, 26, 211.
  37. Iqbal, J. Anal. Biochem. 2011, 414, 226. https://doi.org/10.1016/j.ab.2011.03.021

Cited by

  1. Structurally Diversified Heterocycles and Related Privileged Scaffolds as Potential Urease Inhibitors: A Brief Overview vol.346, pp.6, 2013, https://doi.org/10.1002/ardp.201300041
  2. Iminothiazoline-Sulfonamide Hybrids as Jack Bean Urease Inhibitors; Synthesis, Kinetic Mechanism and Computational Molecular Modeling vol.87, pp.3, 2015, https://doi.org/10.1111/cbdd.12675
  3. vol.55, pp.1, 2017, https://doi.org/10.1080/13880209.2016.1257641
  4. vol.15, pp.1, 2018, https://doi.org/10.1002/cbdv.201700427
  5. Exploiting the Role of Molecular Electrostatic Potential, Deformation Density, Topology, and Energetics in the Characterization of S···N and Cl···N Supramolec vol.16, pp.3, 2016, https://doi.org/10.1021/acs.cgd.5b01499
  6. A review on the development of urease inhibitors as antimicrobial agents against pathogenic bacteria vol.13, pp.None, 2012, https://doi.org/10.1016/j.jare.2018.05.003
  7. Bi‐heterocyclic benzamides as alkaline phosphatase inhibitors: Mechanistic comprehensions through kinetics and computational approaches vol.352, pp.3, 2019, https://doi.org/10.1002/ardp.201800278
  8. Synthesis, molecular modeling studies, ADME prediction of arachidonic acid carbamate derivatives, and evaluation of their acetylcholinesterase activity vol.81, pp.2, 2012, https://doi.org/10.1002/ddr.21621