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Abstract
A floating-strike lookback call (or put) option gives the holder the right to buy (or sell) at some percentage

of the lowest (or highest) price of the underlying asset. This paper will propose an outside lookback call (or
put) option that gives the holder the right to buy (or sell) one underlying asset at its guaranteed floating-strike
price that is some percentage times the smaller (or the greater) of a specific guaranteed amount and the lowest
(or highest) price of the other underlying asset. In addition, this paper derives explicit pricing formulas for
these outside lookback options. Section 3 and Section 4 assume that the underlying assets pay no dividends. In
contrast, Section 5 derives explicit pricing formulas for these options when their underlying assets pay dividends
continuously at a rate proportional to their prices. Some numerical examples are also discussed.
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1. Introduction

A floating-strike lookback call (or put) option gives the holder the right to buy (or sell) at some
percentage of the lowest (highest) price of the underlying asset. Goldman et al. (1979) derived
explicit pricing formulas for floating-strike lookback options where the highest (or lowest) price of
the underlying asset is attained during the whole life of the options. Conze and Viswanathan (1991)
derived explicit pricing formulas for partial floating-strike lookback options that give the holder the
right to buy (or sell) at some percentage times the lowest (or highest) price. Heynen and Kat (1994b,
1997) suggested a way to reduce the price of these partial floating-strike lookback options while
preserving some of their good qualities and derives explicit pricing formulas for the proposed options.
Lee (2008) derived explicit pricing formulas for floating-strike lookback options whose monitoring
period starts at an arbitrary date and ends at another arbitrary date before maturity.

However, researches listed above concern lookback options whose payoff depends on one un-
derlying asset. Lee (2009) discussed outside floating-strike lookback options whose payoffs depend
on prices of two underlying assets: the terminal value of one asset is used to determine the payoff,
and the maximum (or minimum) value of the other asset to determine the floating strike. This paper
proposes an outside floating-strike lookback call (or put) option that gives the holder the right to buy
(or sell) one underlying asset at its guaranteed floating-strike price that is some percentage times the
smaller (or the greater) of a specific guaranteed amount and the lowest (or highest) price of the other
underlying asset. These proposed options will be a generalization of the corresponding floating-strike
lookback options. In addition, this paper will present explicit pricing formulas for these proposed
options.
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This paper is organized as follows. Section 2 discusses some basics for pricing contingent claims
and will derive some useful expectations and probabilities for pricing the proposed options. Section
3 and Section 4 present explicit pricing formulas for the outside floating-strike lookback put and call
options, respectively. In addition, Section 5 derives explicit pricing formulas for these options when
their underlying assets pay dividends continuously at a rate proportional to their prices. These pricing
formulas are generalization of the pricing formulas in Section 3 and Section 4. Some numerical
examples are discussed.

2. Esscher Transforms and Some Useful Formulas

This section discusses some basics for pricing contingent claims and calculates some useful expecta-
tions and probabilities for pricing the proposed options. If we assume the Black-Scholes framework,
then according to the fundamental theorem of asset pricing, the prices of contingent claims such as
options can be calculated as the discounted expectations of the corresponding payoffs with respect
to the equivalent martingale measure. Gerber and Shiu (1994, 1996) showed that Esscher transforms
are an efficient tool to find the equivalent martingale measure if the logarithms of the prices of the
underlying assets are stochastic processes with stationary and independent increments. This section
briefly summarizes a special case of the method of Esscher transforms and demonstrates that the fac-
torization formula is a main feature of this method and that it can simplify many calculations. For
general methods of option pricing, see Baxter and Rennie (1998), Nelken (1996) and Zhang (1998).

Let S 1(t) and S 2(t) denote the time-t prices of two underlying assets. Assume that these assets pay
no dividends. Assume that for t ≥ 0, i = 1 and 2,

S i(t) = S i(0) exp(Xi(t)), (2.1)

where {XXX(t) = (X1(t), X2(t))′} is a 2-dimensional Brownian motion with drift vector µµµ = (µ1, µ2)′,
Xi(0) = 0 and diffusion matrix VVV equal to(

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
. (2.2)

Thus the 2-dimensional Brownian motion is a stochastic process with independent and stationary
increments and XXX(t) = (X1(t), X2(t))′ has a bivariate normal distribution with mean vector µµµt and
covariance matrix VVVt.

For a nonzero real vector hhh = (h1, h2)′, the moment generating function of XXX(t), E[ehhh′XXX(t)], exists
for all t ≥ 0, because {XXX(t)} is the Brownian motion as described above. The stochastic process{

ehhh′XXX(t)E
[
ehhh′XXX(1)

]−t
}

is a positive martingale that can be used to define a new probability measure Q. In technical terms, this
process is used to define the Radon-Nikodym derivative dQ/dP, where P is the original probability
measure. We call Q the Esscher measure of parameter vector hhh.

For a random variable Y that is a real-valued function of {XXX(t), 0 ≤ t ≤ T }, the expectation of Y
under the new probability measure Q is calculated as

E

Y eeehhh′XXX(TTT )

E
[
eeehhh′XXX(1)]TTT

 , (2.3)
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which will be denoted by E[Y;hhh]. The risk-neutral measure is the Esscher measure of parameter
vector hhh = hhh∗ with respect to which the process {e−rtS i(t)} is a martingale. Here, r is a risk-free rate.
Thus

E
[
e−rtS i(t);hhh∗

]
= S i(0). (2.4)

Therefore, hhh∗ is the solution of

µµµ +VhVhVh∗ =
r − σ2

1

2
, r −

σ2
2

2

′ . (2.5)

For t ≥ 0, the moment generating function of XXX(t) under Esscher measure of parameter vector hhh is

E
[
ez′X(t);hhh

]
= exp

{(
µµµ′ + hhh′VVV

)
zzzt +

zzz′VVVzzzt
2

}
, (2.6)

which implies that XXX(t) has a bivariate normal distribution with mean vector (µµµ + VhVhVh)t and variance
VVVt under the Esscher measure. It can be shown that the process {XXX(t)} under the Esscher measure
has independent and stationary increments. Thus, this process is a two-dimensional Brownian motion
with drift vector

µµµ +VhVhVh =
(
µ1
µ2

)
+

(
σ2

1 ρσ1σ2
ρσ1σ2 σ2

2

) (
h1
h2

)
=

(
µ1 + σ

2
1h1 + ρσ1σ2h2

µ2 + ρσ1σ2h1 + σ
2
2h2

)
(2.7)

and diffusion matrix VVV under the Esscher measure of parameter vector hhh.
Let us consider a special case of the factorization formula (Gerber and Shiu, 1994, 1996). For a

random variable Y that is a real-valued function of {XXX(t), 0 ≤ t ≤ T },

E
[
eg′X(T )Y;hhh

]
= E

[
eg′X(T );hhh

]
E

[
Y;hhh + ggg

]
. (2.8)

In particular, for an event B whose condition is determined by {XXX(t), 0 ≤ t ≤ T }, formula (2.8) can be
expressed as follows:

E
[
eg′X(T )I(B);hhh

]
= E

[
eg′X(T );hhh

]
Pr(B;hhh + ggg), (2.9)

where I(·) denotes the indicator function and Pr(B;hhh) denotes the probability of the event B under the
Esscher measure of parameter vector hhh.

Now, let

M2(T ) = max{X2(τ), 0 ≤ τ ≤ T } (2.10)

and

m2(T ) = min{X2(τ), 0 ≤ τ ≤ T }, (2.11)

for T > 0. In Heynen and Kat (1994a), it can be shown that the joint distribution function of M2(T )
and X1(T ) is

Pr(X1(T ) ≤ x,M2(T ) ≤ m)

= Φ2

(
x − µ1T

σ1
√

T
,

m − µ2T

σ2
√

T
; ρ

)
− e

2µ2
σ2

2
m
Φ2

(
x − µ1T

σ1
√

T
− 2ρm

σ2
√

T
,
−m − µ2T

σ2
√

T
; ρ

)
, (2.12)
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where Φ2(a, b; ρ) denotes the bivariate standard normal distribution function with correlation coeffi-
cient ρ. The joint distribution (2.12) will be used for calculating the following expectation (2.13).

Next, consider some useful expectations for pricing the proposed options. Assume that ξ =
2µ2/σ

2
2, η = 1 − 2ρ(σ1/σ2) and c + ξ , 0. The proof of (2.13) will be given in the Appendix.

Here, a ∨ b denotes max(a, b). For d ≥ 0,

E
[
ec·(M2(T )∨d)I((M2(T ) ∨ d) > X1(T ) + k)

]
= ecµ2T+ 1

2 c2σ2
2T Φ2

−k−
(
µ1+cρσ1σ2−µ2−cσ2

2

)
T√(

σ2
1 + σ

2
2 − 2ρσ1σ2

)
T

,
−d+

(
µ2+cσ2

2

)
T

σ2
√

T
;

−ρσ1σ2 + σ
2
2√(

σ2
1 + σ

2
2 − 2ρσ1σ2

)
σ2

2


− c

c + ξ
e(c+ξ)d Φ2

(
ηd − k − µ1T

σ1
√

T
,
−d − µ2T

σ2
√

T
; ρ

)
+ ec·d Φ2

(
d − k − µ1T

σ1
√

T
,

d − µ2T

σ2
√

T
; ρ

)
+

(
ξ

c + ξ
η

|η| + 2ρ
σ1

σ2

1
|η|

)
e

c+ξ
η ke

c+ξ
η µ1T+ 1

2

(
c+ξ
η

)2
σ2

1T

× Φ2

k/η − d +
((
µ1 +

c+ξ
η
σ2

1

)
/η

)
T√(

σ2
1/η

2
)

T
,
−k/η −

((
µ1 +

c+ξ
η
σ2

1

)
/η + µ2 +

c+ξ
η
ρσ1σ2

)
T√(

σ2
1/η

2 + σ2
2 + 2ρσ1σ2/η

)
T

;

−σ2
1/η

2 − ρσ1σ2/η√(
σ2

1/η
2
) (
σ2

1/η
2 + σ2

2 + 2ρσ1σ2/η
)
 + c

c + ξ
e−(c+ξ)µ2T+ 1

2 (c+ξ)2σ2
2T

× Φ2

−k −
(
µ1 − (c + ξ) ρσ1σ2 + ηµ2 − η (c + ξ)σ2

2

)
T√(

σ2
1 + η

2σ2
2 + 2ηρσ1σ2

)
T

,
−d −

(
µ2 − (c + ξ)σ2

2

)
T

σ2
√

T
;

ρσ1σ2 + ησ
2
2√(

σ2
1 + η

2σ2
2 + 2ηρσ1σ2

)
σ2

2


=: H

(
d,

(
c
k

)
,

(
µ1

µ2

)
,

(
σ1

σ2

)
, ρ, T

)
, (2.13)

which will be useful for pricing the proposed put option. In addition, applying (2.13), for d ≤ 0,

E
[
ec·(m2(T )∧d)I((m2(T ) ∧ d) < X1(T ) + k)

]
= E

[
e−c·[Max{−X2(τ), 0≤τ≤T }∨(−d)]I ([Max{−X2(τ), 0 ≤ τ ≤ T } ∨ (−d)] > −X1(T ) + (−k))

]
=: H

(
−d,−

(
c
k

)
,−

(
µ1

µ2

)
,

(
σ1

σ2

)
, ρ, T

)
, (2.14)

which will be useful for pricing the proposed call option. Here, a ∧ b denotes min(a, b). Note
that the stochastic process {(−X1(t),−X2(t))′} is a 2-dimensional Brownian motion with drift vector
(−µ1,−µ2)′ and diffusion matrix VVV .

Finally, let us discuss some useful probability formulas for pricing the proposed options. For
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d ≥ 0, applying (2.13) with c = 0, we have

Pr ((M2(T ) ∨ d) > X1(T ) + k) = E
[
e0·(M2(T )∨d)I((M2(T ) ∨ d) > X1(T ) + k)

]
=: H

(
d,

(
0
k

)
,

(
µ1

µ2

)
,

(
σ1

σ2

)
, ρ, T

)
. (2.15)

Similarly, for d ≤ 0, applying (2.14) with c = 0, we have

Pr ((m2(T ) ∧ d) < X1(T ) + k) = E
[
e0·(m2(T )∧d)I((m2(T ) ∧ d) < X1(T ) + k)

]
=: H

(
−d,−

(
0
k

)
,−

(
µ1

µ2

)
,

(
σ1

σ2

)
, ρ, T

)
. (2.16)

3. Outside Floating-Strike Lookback Put Option

The proposed outside floating-strike lookback put option gives the holder the right to sell one under-
lying asset at its guaranteed floating-strike price that is some percentage times the greater of a specific
guaranteed amount and the highest price of the other underlying asset. This section will derive an
explicit pricing formula for the outside floating-strike lookback put option.

Let us take a close look at the payoff of the outside floating-strike lookback put option. Assume
that λ (> 0) is the percentage over the greater of the highest price and L ≥ S 2(0). The payoff of this
put option can be is written as follows:

(λ · {max(S 2(τ), 0 ≤ τ ≤ T ) ∨ L} − S 1(T ))+ . (3.1)

To simplify writing, we define all expectations in this and next sections as taken with respect to
the risk-neutral measure. Under this measure, the underlying stochastic processes {Xi(τ), τ ≥ 0} is a
Brownian motion with drift vector (r − σ2

1/2, r − σ2
2/2)′ and diffusion matrix VVV . By the fundamental

theorem of asset pricing, the time-0 value of the payoff (3.1) is

e−rT E
[(
λ · S 2(0)eM2(T )∨d − S 1(0)eX1(T )

)
+

]
, (3.2)

where d = ln(L/S 2(0)) ≥ 0. Calculating this discounted expectation (3.2) seems to require significant
complicated and tedious integration; however, formulas (2.13) and (2.15) can simplify and reduce
many of the calculations.

Therefore, the time-0 value of the outside floating-strike lookback put option can be rewritten and
decomposed into the sum of two expectations,

e−rT E
[(
λ · S 2(0)eM2(T )∨d − S 1(0)eX1(T )

)
I
(
(M2(T ) ∨ d) > X1(T ) + ln

(
S 1(0)
λ · S 2(0)

))]
= λe−rT S 2(0)E

[
eM2(T )∨dI

(
(M2(T ) ∨ d) > X1(T ) + ln

(
S 1(0)
λ · S 2(0)

))]
− e−rT S 1(0)E

[
eX1(T )I

(
(M2(T ) ∨ d) > X1(T ) + ln

(
S 1(0)
λ · S 2(0)

))]
. (3.3)

Applying (2.13), the first expectation in the RHS (right hand side) of (3.3) can be

H

d, ( 1
ln

(
S 1(0)
λ·S 2(0)

)), (r − 1
2σ

2
1

r − 1
2σ

2
2

)
,

(
σ1

σ2

)
, ρ, T

 . (3.4)
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Applying the factorization formula (2.9), (2.15) and the fact that {e−rtS i(t)} is a martingale under the
risk-neutral measure, the second term in the RHS of (3.3) will be

e−rT S 1(0)E
[
eX1(T )

]
Pr

(
(M2(T ) ∨ d) > X1(T ) + ln

(
S 1(0)
λ · S 2(0)

)
; (1, 0)′

)
= S 1(0)H

d, ( 0
ln

(
S 1(0)
λ·S 2(0)

)), ( r + 1
2σ

2
1

r − 1
2σ

2
2 + ρσ1σ2

)
,

(
σ1

σ2

)
, ρ, T

 . (3.5)

Note that the drift vector is shifted because of(
r − 1

2σ
2
1

r − 1
2σ

2
2

)
+

(
σ2

1 ρσ1σ2
ρσ1σ2 σ2

2

) (
1
0

)
=

(
r + 1

2σ
2
1

r − 1
2σ

2
2 + ρσ1σ2

)
. (3.6)

Hence, placing (3.4) and (3.5) into (3.3), we have the time-0 value of the outside floating-strike put
option

λe−rT S 2(0)H

d, ( 1
ln

(
S 1(0)
λ·S 2(0)

)), (r − 1
2σ

2
1

r − 1
2σ

2
2

)
,

(
σ1

σ2

)
, ρ, T


− S 1(0)H

d, ( 0
ln

(
S 1(0)
λ·S 2(0)

)), ( r + 1
2σ

2
1

r − 1
2σ

2
2 + ρσ1σ2

)
,

(
σ1

σ2

)
, ρ, T

 . (3.7)

For numerical results of pricing formula (3.7), see Table 1. It is observed that L/S 2(0), T and σ1/σ2
increase formula (3.7), but r and ρ decrease it. Thus, the guaranteed strike price L, the maturity and
the volatility of the first asset S 1 increase the put option price. Meanwhile, the interest rate and the
correlation coefficient decrease the price.

Let us derive the time-t value of this option. By the fundamental theorem of asset pricing, the
time-t value of the payoff (3.1) will be expressed as discounted conditional expectation

e−r(T−t)E
[
(λ · {max(S 2(τ), 0 ≤ τ ≤ T ) ∨ L} − S 1(T ))+ |(S 1(τ), S 2(τ)), 0 ≤ τ ≤ t

]
. (3.8)

According to the model (2.1), for i = 1, 2,

S i(T ) = S i(0)eXi(t)+Xi(T )−Xi(t) = S i(t)eXi(T )−Xi(t). (3.9)

The floating-strike price of (3.8) can be rewritten as follows:

λ · {max(S 2(τ), 0 ≤ τ ≤ t) ∨max(S 2(τ), t ≤ τ ≤ T ) ∨ L}

= λ · S 2(t)e
max(X2(τ)−X2(t), t≤τ≤T )∨ln

[
{max(S 2(τ), 0≤τ≤t)∨L}

S 2(t)

]
. (3.10)

Here, note that

(max(X2(τ) − X2(t), t ≤ τ ≤ T ), X1(T ) − X1(t)) d
= (M2(T − t), X1(T − t)), (3.11)

where notation d
= implies that the two random vectors follow the same distribution. In addition, the

vector in the LHS (left hand side) of (3.11) is independent of (S 1(τ), S 2(τ)) for 0 ≤ τ ≤ t. Thus,
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Table 1: Put option prices (S 1(0) = S 2(0) = 100, λ = 1, σ2 = 0.2)
L/S 2(0)

T σ1/σ2 r 1 1.05 1.1 1 1.05 1.1
ρ = 0 ρ = 0.3

0.04 8.32 8.95 11.21 8.12 8.77 11.17
0.5 0.06 8.14 8.71 10.83 7.92 8.51 10.78

0.08 7.96 8.48 10.48 7.72 8.25 10.41
0.04 9.60 10.16 12.06 9.18 9.76 11.84

0.25 1.0 0.06 9.43 9.96 11.75 9.00 9.52 11.49
0.08 9.27 9.76 11.46 8.82 9.30 11.16
0.04 11.24 11.78 13.53 10.70 11.32 13.24

1.5 0.06 11.08 11.58 13.24 10.52 11.10 12.93
0.08 10.92 11.40 12.98 10.35 10.88 12.63
0.04 11.69 12.07 13.49 11.38 11.73 13.30

0.5 0.06 11.33 11.66 12.92 10.98 11.26 12.68
0.08 11.00 11.29 12.41 10.61 10.83 12.10
0.04 13.55 13.91 15.14 12.92 13.25 14.62

0.50 1.0 0.06 13.22 13.54 14.66 12.56 12.83 14.07
0.08 12.91 13.21 14.23 12.21 12.44 13.55
0.04 15.90 16.26 17.43 15.12 15.52 16.83

1.5 0.06 15.58 15.91 16.98 14.76 15.12 16.32
0.08 15.28 15.58 16.57 14.69 14.95 16.00

according to (3.9), (3.10), (3.11) and this independence, the time-t value (3.8) is the same as the time-
0 value (3.2) except that T = T − t, S i(0) = S i(t), and L = max(S 2(τ), 0 ≤ τ ≤ t) ∨ L. Therefore, we
have the time-t value of this put option,

λe−r(T−t)S 2(t)H

dmax
t ,

(
1

ln
(

S 1(t)
λ·S 2(t)

)), (r − 1
2σ

2
1

r − 1
2σ

2
2

)
,

(
σ1

σ2

)
, ρ, T − t


− S 1(t)H

dmax
t ,

(
0

ln
(

S 1(t)
λ·S 2(t)

)), ( r + 1
2σ

2
1

r − 1
2σ

2
2 + ρσ1σ2

)
,

(
σ1

σ2

)
, ρ, T − t

 . (3.12)

where dmax
t = ln[{max(S 2(τ), 0 ≤ τ ≤ t) ∨ L}/S 2(t)].

4. Outside Floating-Strike Lookback Call Option

The proposed outside floating-strike lookback call option gives the holder the right to buy one un-
derlying asset at its guaranteed floating-strike price that is some percentage times the smaller of a
specific guaranteed amount and the lowest price of the other underlying asset. This section will derive
an explicit pricing formula for the call option.

Let us take a close look at the payoff of the outside floating-strike lookback call option. Assume
that λ (> 0) is the percentage over the lesser of the lowest price and L ≤ S 2(0). The payoff of this call
option is

(S 1(T ) − λ · {min(S 2(τ), 0 ≤ τ ≤ t) ∧ L})+. (4.1)

By the fundamental theorem of asset pricing, the time-0 value of the payoff is

e−rT E
[(

S 1(0)eX1(T ) − λ · S 2(0)em2(T )∧d
)
+

]
, (4.2)

where d = ln(L/S 2(0)) ≤ 0. Calculating this discounted expectation (4.2) seems to require much
complicated and tedious integration, but formula (2.14) and (2.16) can simplify and reduce many
calculations.
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Therefore, the time-0 value of the outside floating-strike lookback call option can be rewritten and
decomposed into the sum of two expectations,

e−rT E
[(

S 1(0)eX1(T ) − λ · S 2(0)em2(T )∧d
)

I
(
(m2(T ) ∧ d) < X1(T ) + ln

(
S 1(0)
λ · S 2(0)

))]
= e−rT S 1(0)E

[
eX1(T )I

(
(m2(T ) ∧ d) < X1(T ) + ln

(
S 1(0)
λ · S 2(0)

))]
− λe−rT S 2(0)E

[
em2(T )∧dI

(
(m2(T ) ∧ d) < X1(T ) + ln

(
S 1(0)
λ · S 2(0)

))]
. (4.3)

Applying (2.14), we have the second expectation in the RHS of (4.3)

H

−d,−
(

1
ln

(
S 1(0)
λ·S 2(0)

)),−(r − 1
2σ

2
1

r − 1
2σ

2
2

)
,

(
σ1

σ2

)
, ρ, T

 . (4.4)

In addition, applying the factorization formula (2.9), (2.16) and the fact that {e−rtS i(t)} is a martingale
under the risk-neutral measure, the first term in the RHS of (4.3) will be

e−rT S 1(0)E
[
eX1(T )

]
Pr

(
(m2(T ) ∧ d) < X1(T ) + ln

(
S 1(0)
λ · S 2(0)

)
; (1, 0)′

)
= S 1(0)H

−d,−
(

0
ln

(
S 1(0)
λ·S 2(0)

)),−( r + 1
2σ

2
1

r − 1
2σ

2
2 + ρσ1σ2

)
,

(
σ1

σ2

)
, ρ, T

 . (4.5)

Hence, placing (4.4) and (4.5) into (4.3), we have the time-0 value of the outside floating-strike call
option,

S 1(0)H

−d,−
(

0
ln

(
S 1(0)
λ·S 2(0)

)),−( r + 1
2σ

2
1

r − 1
2σ

2
2 + ρσ1σ2

)
,

(
σ1

σ2

)
, ρ, T


− λe−rT S 2(0)H

−d,−
(

1
ln

(
S 1(0)
λ·S 2(0)

)),−(r − 1
2σ

2
1

r − 1
2σ

2
2

)
,

(
σ1

σ2

)
, ρ, T

 . (4.6)

For numerical results of pricing formula (4.6), see Table 2 showing that r, T and σ1/σ2 increase
formula (4.6), but L/S 2(0) and ρ decrease it. Thus, the interest rate, the maturity and the volatility
of the first asset S 1 increase the call option price. Meanwhile, guaranteed strike price L and the
correlation coefficient decrease the price.

Let us derive the time-t value of this call option. By the fundamental theorem of asset pricing, the
time-t value of the payoff (4.1) will be expressed in terms of conditional expectation

e−r(T−t)E
[
(S 1(T ) − λ · {min(S 2(τ), 0 ≤ τ ≤ T ) ∧ L})+ |(S 1(τ), S 2(τ)), 0 ≤ τ ≤ t

]
, (4.7)

whose floating-strike price can be calculated as follows:

λ · {min(S 2(τ), 0 ≤ τ ≤ t) ∧ {min(S 2(τ), t ≤ τ ≤ T ) ∧ L}

= λ · S 2(t)e
min(X2(τ)−X2(t), t≤τ≤T )∧ln

[
min(S 2(τ), 0≤τ≤t)∧L

S 2(t)

]
. (4.8)
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Table 2: Call option prices (S 1(0) = S 2(0) = 100, λ = 1, σ2 = 0.2)
L/S 2(0)

T σ1/σ2 r 1 0.95 0.9 1 0.95 0.9
ρ = 0 ρ = 0.3

0.04 8.55 9.37 12.10 8.42 9.29 12.09
0.5 0.06 8.75 9.63 12.45 8.64 9.57 12.44

0.08 8.96 9.90 12.80 8.86 9.85 12.79
0.04 9.62 10.29 12.57 9.30 10.02 12.47

0.25 1.0 0.06 9.79 10.50 12.88 9.49 10.25 12.79
0.08 9.97 10.72 13.19 9.68 10.50 13.11
0.04 11.07 11.67 13.67 10.64 11.34 13.51

1.5 0.06 11.23 11.86 13.94 10.81 11.55 13.80
0.08 11.38 12.05 14.21 10.99 11.76 14.09
0.04 12.14 12.71 14.68 11.98 12.57 14.64

0.5 0.06 12.55 13.18 15.27 12.41 13.07 15.24
0.08 12.97 13.67 15.88 12.86 13.59 15.86
0.04 13.59 14.05 15.63 13.16 13.63 15.39

0.50 1.0 0.06 13.93 14.43 16.13 13.53 14.06 15.92
0.08 14.28 14.83 16.64 13.92 14.50 16.47
0.04 15.58 15.99 17.37 15.00 15.48 17.04

1.5 0.06 15.88 16.32 17.79 15.33 15.85 17.50
0.08 16.19 16.67 18.24 15.68 16.24 17.98

Here, note that

(min(X2(τ) − X2(t), t ≤ τ ≤ T ), X1(T ) − X1(t)) d
= (m2(T − t), X1(T − t)). (4.9)

In addition, the vector in the LHS of (4.9) is independent of (S 1(τ), S 2(τ)) for 0 ≤ τ ≤ t. Thus,
according to (3.9), (4.8), (4.9) and this independence, the time-t value (4.7) is the same as the time-0
value (4.2) except that T = T − t, S i(0) = S i(t), and L = min(S 2(τ), 0 ≤ τ ≤ t) ∧ L. Therefore, we
have the time-t value of this call option,

S 1(t)H

−dmin
t ,−

(
0

ln
(

S 1(t)
λ·S 2(t)

)),−( r + 1
2σ

2
1

r − 1
2σ

2
2 + ρσ1σ2

)
,

(
σ1

σ2

)
, ρ, T − t


− λe−r(T−t)S 2(t)H

−dmin
t ,−

(
1

ln
(

S 1(t)
λ·S 2(t)

)),−(r − 1
2σ

2
1

r − 1
2σ

2
2

)
,

(
σ1

σ2

)
, ρ, T − t

 . (4.10)

where dmin
t = ln[{min(S 2(τ), 0 ≤ τ ≤ t) ∧ L}/S 2(t)].

5. Continuous Proportional Dividends

The previous sections derived the explicit pricing formulas for the outside floating-strike lookback
options whose underlying assets pay no dividends. The pricing formulas in Section 3 and Section 4
can be extended to the case where each of the underlying assets pays dividends continuously at a rate
proportional to its price. This section will derive explicit pricing formulas for this case.

Let S i(t) denote the time-t price of two underlying assets for i = 1, 2, respectively. Assume that
δi is the constant nonnegative dividend yield rate such that the assets pay dividends δiS i(t)dt between
time t and time t + dt. If all dividends of asset i are reinvested in the asset, each share of the asset at
time 0 grows to eδit shares at time t. We assume that the prices of these assets follow the model (2.1);
therefore, if an investor buys one share of asset i at S i(0) and reinvests all dividends in the asset, his
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fund value invested in asset i will be

eδitS i(t) = eδitS i(0) exp(Xi(t)) (5.1)

at time t. The risk-neutral measure is the Esscher measure of parameter vector hhh = hhh∗∗ with respect to
which the process {e−(r−δi)tS i(t)} is a martingale. Therefore, hhh∗∗ is the solution of

µµµ + Vh∗∗ =
r − δ1 −

σ2
1

2
, r − δ2 −

σ2
2

2

′ . (5.2)

Note that the process {X(t)} is a Brownian motion with drift vector µµµ + Vh∗∗ and diffusion matrix V
under the risk-neutral measure. For further discussion, see Section 9 of Gerber and Shiu (1996).

By the fundamental theorem of asset pricing, the time-0 values of the payoffs (3.1) and (4.1) are

e−rT E
[(
λ · S 2(0)eM2(T )∨d − S 1(0)eX1(T )

)
+

; h∗∗
]

= λe−rT S 2(0)E
[
eM2(T )∨dI

(
(M2(T ) ∨ d) > X1(T ) + ln

(
S 1(0)
λ · S 2(0)

))
; h∗∗

]
− e−δ1T e−(r−δ1)T S 1(0)E

[
eX1(T )I

(
(M2(T ) ∨ d) > X1(T ) + ln

(
S 1(0)
λ · S 2(0)

))
; h∗∗

]
(5.3)

and

e−rT E
[(

S 1(0)eX1(T ) − λ · S 2(0)em2(T )∧d
)
+

; h∗∗
]

= e−δ1T e−(r−δ1)T S 1(0)E
[
eX1(T )I

(
(m2(T ) ∧ d) < X1(T ) + ln

(
S 1(0)
λ · S 2(0)

))
; h∗∗

]
− λe−rT S 2(0)E

[
em2(T )∧dI

(
(m2(T ) ∧ d) < X1(T ) + ln

(
S 1(0)
λ · S 2(0)

))
; h∗∗

]
, (5.4)

respectively, of which two expectations are the same as ones of (3.3) and (4.3) except that the under-
lying stochastic process is a Brownian motion with drift vector (5.2) and e−(r−δ1)T S 1(0)E[eX1(T ); h∗∗] =
S 1(0). Thus, the time-0 values of the outside floating-strike lookback put and call options are

λe−rT S 2(0)H

d, ( 1
ln

(
S 1(0)
λ·S 2(0)

)), (r − δ1 − 1
2σ

2
1

r − δ2 − 1
2σ

2
2

)
,

(
σ1

σ2

)
, ρ, T


− e−δ1T S 1(0)H

d, ( 0
ln

(
S 1(0)
λ·S 2(0)

)), ( r − δ1 +
1
2σ

2
1

r − δ2 − 1
2σ

2
2 + ρσ1σ2

)
,

(
σ1

σ2

)
, ρ, T

 (5.5)

and

e−δ1T S 1(0)H

−d,−
(

0
ln

(
S 1(0)
λ·S 2(0)

)),−( r − δ1 +
1
2σ

2
1

r − δ2 − 1
2σ

2
2 + ρσ1σ2

)
,

(
σ1

σ2

)
, ρ, T


− λe−rT S 2(0)H

−d,−
(

1
ln

(
S 1(0)
λ·S 2(0)

)),−(r − δ1 − 1
2σ

2
1

r − δ2 − 1
2σ

2
2

)
,

(
σ1

σ2

)
, ρ, T

 (5.6)
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Table 3: Put option prices (dividend) (S 1(0) = S 2(0) = 100, λ = 1, σ1 = σ2 = 0.2, T = 0.5, r = 0.06)
L/S 2(0)

δ1 δ2 1 1.05 1.1 1 1.05 1.1
ρ = 0 ρ = 0.3

0.00 13.22 13.54 14.66 12.56 12.83 14.07
0.01 0.00 13.56 13.90 15.03 12.92 13.21 14.46
0.02 13.91 14.25 15.41 13.28 13.58 14.86
0.00 12.97 13.31 14.45 12.32 12.61 13.88
0.01 0.01 13.31 13.66 14.82 12.67 12.98 14.27
0.02 13.66 14.01 15.19 13.04 13.35 14.66
0.00 12.73 13.07 14.24 12.08 12.38 13.69
0.01 0.02 13.07 13.42 14.61 12.44 12.75 14.08
0.02 13.41 13.77 14.99 12.80 13.12 14.47

Table 4: Call option prices (dividend) (S 1(0) = S 2(0) = 100, λ = 1, σ1 = σ2 = 0.2, T = 0.5, r = 0.06)
L/S 2(0)

δ1 δ2 1 0.95 0.9 1 0.95 0.9
ρ = 0 ρ = 0.3

0.00 13.93 14.43 16.13 13.53 14.06 15.92
0.01 0.00 13.53 14.02 15.69 13.11 13.63 15.47
0.02 13.13 13.61 15.26 12.71 13.21 15.03
0.00 14.09 14.58 16.24 13.69 14.20 16.02
0.01 0.01 13.69 14.16 15.80 13.27 13.78 15.57
0.02 13.29 13.76 15.37 12.86 13.35 15.13
0.00 14.26 14.73 16.35 13.86 14.35 16.13
0.01 0.02 13.85 14.32 15.91 13.44 13.92 15.68
0.02 13.46 13.91 15.48 13.03 13.50 15.23

respectively. Therefore, as done in Section 3 and Section 4, we have the time-t values of the outside
floating-strike lookback put and call options,

λe−r(T−t)S 2(t)H

dmax
t ,

(
1

ln
(

S 1(t)
λ·S 2(t)

)), (r − δ1 − 1
2σ

2
1

r − δ2 − 1
2σ

2
2

)
,

(
σ1

σ2

)
, ρ, T − t


− e−δ1(T−t)S 1(t)H

dmax
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(

S 1(t)
λ·S 2(t)
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1
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2
1
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2σ

2
2 + ρσ1σ2

)
,

(
σ1

σ2

)
, ρ, T − t

 (5.7)

and

e−δ1(T−t)S 1(t)H

−dmin
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λ·S 2(t)
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2 + ρσ1σ2

)
,

(
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)
, ρ, T − t


− λe−r(T−t)S 2(t)H

−dmin
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(
1

ln
(

S 1(t)
λ·S 2(t)

)),−(r − δ1 − 1
2σ

2
1

r − δ2 − 1
2σ

2
2

)
,

(
σ1

σ2

)
, ρ, T − t

 (5.8)

respectively.
Finally, let us discuss numerical results of (5.5) and (5.6). For numerical results of put pricing

formula (5.5), see Table 3 showing that δ1 and L/S 2(0) increase formula (5.5), but δ2 and ρ decrease
it. The dividend rate of the first asset increases the put price but the dividend rate of the second asset
decreases it. In addition, for numerical results of call pricing formula (5.6), see Table 4. This table
shows that δ1, L/S 2(0) and ρ decrease formula (5.6), but δ2 increases it. The dividend rate of the first
asset decreases the call price but the dividend rate of the second asset increases it.
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6. Conclusion

We have derived the explicit pricing formulas for the proposed outside floating-strike lookback options
and discussed some numerical results of the pricing formulas under either non-dividend assumption or
continuous dividend assumption. More realistic assumptions in pricing and hedging outside floating-
strike lookback options should be introduced in future research: stochastic interest rates, flexible
monitoring periods and transaction costs.

Appendix: Proof of (2.13)

First of all, let us discuss the joint probability distribution function of random variables M2(T ) and
X1(T ),

Pr(X1(T ) ≤ x,M2(T ) ≤ m)

= Φ2

(
x − µ1T

σ1
√

T
,

m − µ2T

σ2
√

T
; ρ

)
− e

2µ2
σ2

2
m
Φ2

(
x − µ1T

σ1
√

T
− 2ρm

σ2
√

T
,
−m − µ2T

σ2
√

T
; ρ

)
, (2.12)

whose two bivariate normal distribution functions can be expressed as follows:

Φ2

(
x − µ1T

σ1
√

T
,

m − µ2T

σ2
√

T
; ρ

)
= Pr(X1(T ) ≤ x, X2(T ) ≤ m) (A.1)

and

Φ2

(
x − µ1T

σ1
√

T
− 2ρm

σ2
√

T
,
−m − µ2T

σ2
√

T
; ρ

)
= Pr

(
X1(T ) ≤ x − 2ρ

σ1

σ2
m, X2(T ) ≤ −m

)
. (A.2)

Hence, placing (A.1) and (A.2) into (2.12), we have

Pr(X1(T ) ≤ x,M2(T ) ≤ m)

= Pr(X1(T ) ≤ x, X2(T ) ≤ m) − e
2µ2
σ2

2
m

Pr
(
X1(T ) ≤ x − 2ρ

σ1

σ2
m, X2(T ) ≤ −m

)
. (A.3)

Next, let us derive two double integral formulas used many times for the proof of (2.13). Applying
the factorization formula (2.9), one double integral can be expressed as follows:"

a·x+b·y<e
c·x+d·y< f

eh1·x ∂2

∂y∂x
Pr(X1(T ) ≤ x, X2(T ) ≤ y)dxdy

= E
[
eh1·X1(T )I (a · X1(T ) + b · X2(T ) < e, c · X1(T ) + d · X2(T ) < f )

]
= E

[
eh1·X1(T )

]
Pr

(
a · X1(T ) + b · X2(T ) < e, c · X1(T ) + d · X2(T ) < f ; (h1, 0)′

)
= eh1µ1T+ 1

2 h2
1σ

2
1T

· Φ2

e−
[
a
(
µ1+h1σ

2
1

)
+ b(µ2+h1ρσ1σ2)

]
T√(

a2σ2
1 + b2σ2

2 + 2abρσ1σ2

)
T

,
f −

[
c
(
µ1+h1σ

2
1

)
+ d(µ2+h1ρσ1σ2)

]
T√(

c2σ2
1 + d2σ2

2 + 2cdρσ1σ2

)
T

; ρ∗

 , (A.4)
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where ρ∗ = {acσ2
1+(ad+bc)ρσ1σ2+bdσ2

2}/
√

(a2σ2
1 + b2σ2

2 + 2abρσ1σ2)(c2σ2
1 + d2σ2

2 + 2cdρσ1σ2).
Similarly, the other double integral c"

a·x+b·y<e
c·x+d·y< f

eh2·y ∂2

∂y∂x
Pr(X1(T ) ≤ x, X2(T ) ≤ y)dxdy

= eh2µ2T+ 1
2 h2
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2
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· Φ2
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 . (A.5)

Now, let us derive (2.13). The expectation (2.13) can be expressed as

E
[
ec·(M2(T )∨d)I((M2(T ) ∨ d) > X1(T ) + k)

]
= E

[
ec·M2(T )I(M2(T ) > d,M2(T ) > X1(T ) + k)

]
+ ec·d Pr(M2(T ) ≤ d, X1(T ) ≤ d − k),

which, applying (2.12), becomes"
m>x+k

m>d

ec·m ∂2

∂m∂x
Pr(X1(T ) ≤ x,M2(T ) ≤ m)dxdy

+ ec·d
[
Φ2

(
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√

T
; ρ
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− 2ρd
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T
,
−d − µ2T

σ2
√

T
; ρ

)]
. (A.6)

If we place (A.3) into the double integral of (A.6), the first term of (A.6) can be decomposed into the
sum of three double integrals as follows:"

m>x+k
m>d

ec·m ∂2

∂m∂x
Pr(X1(T ) ≤ x, X2(T ) ≤ m)dxdm

− 2µ2

σ2
2

"
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(
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∂x

[
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(
X1(T ) ≤ x − 2ρ

σ1
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m, X2(T ) ≤ −m
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dxdm.

−
"
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(
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σ2
2
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m ∂2

∂m∂x

[
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(
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σ1

σ2
m, X2(T ) ≤ −m
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dxdm.

=: (I) − 2µ2

σ2
2

(II) − (III). (A.7)

Applying (A.5), the first double integral of (A.7) will be

(I) = ecµ2T+ 1
2 c2σ2
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· Φ2
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 . (A.8)
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Let us consider the second double integral of (A.7). Calculating the inside integral, the second
double integral of (A.7) will be written as follows:

(II) =
"

m>x+k
m>d

e(c+ξ)m ∂

∂x

[
Pr

(
X1(T ) ≤ x − 2ρ

σ1

σ2
m, X2(T ) ≤ −m

)]
dxdm

=

∫ m=∞

m=d
e(c+ξ)m Pr

(
X1(T ) ≤

(
1 − 2ρ

σ1

σ2

)
m − k, X2(T ) ≤ −m

)
dm. (A.9)

Here, assume that η = 1 − 2ρ(σ1/σ2). If we apply integration by parts, (A.9) will be

1
c + ξ

[
e(c+ξ)m Pr (X1(T ) ≤ ηm − k, X2(T ) ≤ −m)

]m=∞
m=d

− 1
c + ξ

∫ m=∞

m=d
e(c+ξ)m d

dm
Pr (X1(T ) ≤ ηm − k, X2(T ) ≤ −m) dm

=: (II-1) − 1
c + ξ

(II-2). (A.10)

The first term of (A.10) is

(II-1) = − 1
c + ξ

e(c+ξ)d Pr (X1(T ) ≤ ηd − k, X2(T ) ≤ −d)

= − 1
c + ξ

e(c+ξ)d Φ2

(
ηd − k − µ1T

σ1
√

T
,
−d − µ2T

σ2
√

T
; ρ

)
. (A.11)

Here, we need to calculate (II-2), the last integral of (A.10). Assume that ϕ2(x1, x2; ρ) denotes the
joint density function of the bivariate standard normal distribution with correlation coefficient ρ. Let
g1 = ηm − k and g2 = −m. The last integral of (A.10) can be expressed in terms of ϕ2(x1, x2; ρ) as
follows:

(II-2) =
∫ m=∞

m=d
e(c+ξ)m d

dm
Pr (X1(T ) ≤ ηm − k, X2(T ) ≤ −m) dm

=

∫ m=∞

m=d
e(c+ξ)m

[
d

dm

∫ g1

−∞

∫ g2

−∞

1

σ1
√

Tσ2
√

T
ϕ2

(
u − µ1T

σ1
√

T
,

v − µ2T

σ2
√

T
; ρ

)
dvdu

]
dm, (A.12)

which, differentiating the inside double integral with respect to variable m, will be

η ·
∫ m=∞

m=d

∫ g2

−∞
e(c+ξ)m 1

σ1
√

Tσ2
√

T
ϕ2

(
g1 − µ1T

σ1
√

T
,

v − µ2T

σ2
√

T
; ρ

)
dvdm

−
∫ m=∞

m=d

∫ g1

−∞
e(c+ξ)m 1

σ1
√

Tσ2
√

T
ϕ2

(
u − µ1T

σ1
√

T
,

g2 − µ2T

σ2
√

T
; ρ

)
dudm. (A.13)

Using a change of variables with g1 = ηm − k and g2 = −m in the two double integrals of (A.13) and
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applying (A.4) and (A.5), (A.13) can be calculated as follows:

η

|η|

"
− 1
η g1<

k
η−d

1
η g1+v<− k

η

e(c+ξ)
( g1+k

η

) 1

σ1
√

Tσ2
√

T
ϕ2

(
g1 − µ1T

σ1
√

T
,

v − µ2T

σ2
√

T
; ρ

)
dvdg1

−
"

u+ηg2<−k
g2<−d

e(c+ξ)(−g2) 1

σ1
√

Tσ2
√

T
ϕ2

(
u − µ1T

σ1
√

T
,

g2 − µ2T

σ2
√

T
; ρ

)
dudg2

=
η

|η|e
c+ξ
η ke

c+ξ
η µ1T+ 1

2

(
c+ξ
η

)2
σ2

1T

× Φ2

k/η − d +
((
µ1 +

c+ξ
η
σ2

1

)
/η

)
T√(

σ2
1/η

2
)

T
,
−k/η −

((
µ1 +

c+ξ
η
σ2

1

)
/η + µ2 +

c+ξ
η
ρσ1σ2

)
T√(

σ2
1/η

2 + σ2
2 + 2ρσ1σ2/η

)
T

;

−σ2
1/η

2 − ρσ1σ2/η√(
σ2

1/η
) (
σ2

1/η
2 + σ2

2 + 2ρσ1σ2/η
)
 − e−(c+ξ)µ2T+ 1

2 (c+ξ)2σ2
2T

× Φ2

−k −
(
µ1 − (c + ξ)ρσ1σ2 + ηµ2 − η(c + ξ)σ2

2

)
T√(

σ2
1 + η

2σ2
2 + 2ηρσ1σ2

)
T

,
−d −

(
µ2 − (c + ξ)σ2

2

)
T

σ2
√

T
;

ρσ1σ2 + ησ
2
2√(

σ2
1 + η

2σ2
2 + 2ηρσ1σ2

)
σ2

2


= (II-2). (A.14)

Let us calculate the last integral in the RHS of (A.7). Remind that ξ = 2µ2/σ
2
2, and η = 1 −

2ρ(σ1/σ2). Using a change of variables with u = x − 2ρ(σ1/σ2) and v = −m, the last double integral
of (A.7) will be

(III) =
"
v<−d

u+ηv<−k

e−(c+ξ)v ∂2

∂m∂x
[Pr (X1(T ) ≤ u, X2(T ) ≤ v)] dudv (A.15)

of which the second-order derivative with respect to m and x becomes

− ∂2

∂v∂u
[Pr (X1(T ) ≤ u, X2(T ) ≤ v)] − 2ρ

σ1

σ2

∂2

∂u2 [Pr (X1(T ) ≤ u, X2(T ) ≤ v)] , (A.16)

if the chain rule is applied with ∂u/∂x = 1, ∂u/∂m = −2ρ(σ1/σ2), ∂v/∂x = 0 and ∂v/∂m = −1.
Hence, placing (A.16) into (A.15), we have

(III) = −
"
v<−d

u+ηv<−k

e−(c+ξ)v ∂2

∂v∂u
[Pr (X1(T ) ≤ u, X2(T ) ≤ v)] dudv
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− 2ρ
σ1

σ2

"
v<−d

u+ηv<−k

e−(c+ξ)v ∂
2

∂u2 [Pr (X1(T ) ≤ u, X2(T ) ≤ v)] dudv

=: −(III-1) − 2ρ
σ1

σ2
(III-2). (A.17)

Applying (A.5), the first double integral of (A.17) will be

(III-1) = e−(c+ξ)µ2T+ 1
2 (c+ξ)2σ2

2T

× Φ2

−k −
(
µ1 − (c + ξ)ρσ1σ2 + ηµ2 − η(c + ξ)σ2

2

)
T√(

σ2
1 + η

2σ2
2 + 2ηρσ1σ2

)
T

,
−d −

(
µ2 − (c + ξ)σ2

2

)
T

σ2
√

T
;

ρσ1σ2 + ησ
2
2√(

σ2
1 + η

2σ2
2 + 2ηρσ1σ2

)
σ2

2

 . (A.18)

Now, let us consider (III-2), the second double integral of (A.17). The second-order derivative in
the second double integral of (A.17) can be calculated as follows:

∂2

∂u2 [Pr (X1(T ) ≤ u, X2(T ) ≤ v)] =
∂2

∂u2

[∫ u

−∞

∫ v

−∞

1

σ1
√

Tσ2
√

T
ϕ2

(
z − µ1T

σ1
√

T
,

w − µ2T

σ2
√

T
; ρ

)
dwdz

]
=

∫ v

−∞

1

σ1
√

Tσ2
√

T

∂

∂u
ϕ2

(
u − µ1T

σ1
√

T
,

w − µ2T

σ2
√

T
; ρ

)
dw. (A.19)

Placing (A.19) into the second double integral of (A.17), we have a triple integral,

(III-2) =
$
v<−d

u+ηv<−k
w<v

e−(c+ξ)v 1

σ1
√

Tσ2
√

T

∂

∂u
ϕ2

(
u − µ1T

σ1
√

T
,

w − µ2T

σ2
√

T
; ρ

)
dwdudv

=

"
w<v<−d

e−(c+ξ)v 1

σ1
√

Tσ2
√

T


∫

u<−ηv−k

∂

∂u
ϕ2

(
u − µ1T

σ1
√

T
,

w − µ2T

σ2
√

T
; ρ

)
du

 dwdv

=

"
w<v<−d

e−(c+ξ)v 1

σ1
√

Tσ2
√

T
ϕ2

(
−ηv − k − µ1T

σ1
√

T
,

w − µ2T

σ2
√

T
; ρ

)
dwdv, (A.20)

which, using a change of variables with y = −ηv− k and applying (A.4), can be calculated as follows:

1
|η|e

c+ξ
η k
"

− y
η<

k
η−d

y
η+w<− k

η

e
c+ξ
η y 1

σ1
√

Tσ2
√

T
ϕ2

(
y − µ1T

σ1
√

T
,

w − µ2T

σ2
√

T
; ρ

)
dwdv
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=
1
|η|e

c+ξ
η ke

c+ξ
η µ1T+

(
c+ξ
η

)2
σ2

1T

× Φ2

k/η−d−
(
−

(
µ1+(c+ξ)σ2

1/η
)
/η

)
T√(

σ2
1/η

2
)

T
,
−k/η−

((
µ1+(c+ξ)σ2

1/η
)
/η+µ2+(c+ξ)ρσ1σ2/η

)
T√(

σ2
1/η

2 + σ2
2 + 2ρσ1σ2/η

)
T

;

−σ2
1/η

2 − ρσ1σ2/η√(
σ2

1/η
2
) (
σ2

1/η
2 + σ2

2 + 2ρσ1σ2/η
)


= (III-2). (A.21)

Finally, according to (A.6), (A.8), (A.10) and (A.17), we have the expectation formula (2.13).
Note that the normal distribution functions in (A.11), the first term and the second term of the RHS of
(A.14) are the same as those in the last term of (A.6), (A.21) and (A.18), respectively.
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