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UNIVERSAL QUATERNARY LATTICES OVER Fq[x]

Chong Gyu Lee

Abstract. In this paper, we show that any definite lattice over Fq [x] is

universal if and only if it is quaternary and its discriminant is of degree

2, where ch(Fq) 6= 2. The Four Conjecture follows as an immediate
consequence.

1. Introduction

After Conway and Schneeberger proved the Fifteen Theorem, which provides
a criterion for determining universality of positive definite integral quadratic
forms over Z, the theorem was generalized in various ways. One variation is
the ‘Finiteness Theorem’ proved by B.M. Kim, M.-H. Kim and B.-K. Oh [5].
Any infinite set S ⊂ N contains a finite subset S0 satisfying the following: any
positive definite integral quadratic form representing S0 represents S. Another
is the ‘Four Conjecture’ by L. Gerstein in [2], which was recently proved by
M.-H. Kim, Y. Wang and F. Xu in [6] and by W.K. Chan and J. Daniels in [9],
independently.

Four Conjecture A definite quadratic form over Fq[x] represents every
polynomial in Fq[x] if it represents 1, δ, x and δx, where ch(Fq) 6= 2 and δ is a
non-square element in Fq.

The aim of this paper is to give another proof of the Four Conjecture. In fact,
we can find another criterion for universality which is so simple that we only
have to check the degree of discriminant. It will give us the Four Conjecture
as an immediate corollary.

Theorem. A definite Fq[x]-lattice L is universal if and only if it is quaternary
and its discriminant is of degree 2, where ch(Fq) 6= 2.

Within this paper, we adopt geometric terminology and notations. From
now on, by a lattice, we mean a lattice over Fq[x], where Fq is a finite field
with q elements where q = pr for some odd prime p, unless stated otherwise.
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We denote the quadratic map and the bilinear map on L by φL and BL, re-
spectively. We pick a non-square element δ ∈ Fq and fix it. We refer [8] to the
readers for unexplained terminology and basic facts.

2. General forms

In [2, Proposition, p.132], Gerstein showed that if L is a definite quaternary
lattice representing 1, δ, x and δx, then

L ' 〈1,−δ〉 ⊥
(
αx+ β γ
γ −δ(αx+ β) + ξ

)
(A)

for some α, β, γ, ξ ∈ Fq, α 6= 0. In this section, we prove that the definite
quaternary lattice over Fq[x] with its discriminant of degree 2 also satisfies
(A).

Lemma 2.1. If L is a definite quaternary lattice with discriminant of degree
2, then (A) holds.

Proof. Let L be a definite quaternary lattice, let B = {e1, e2, e3, e4} be a basis
of L such that {φL(e1), · · · , φL(e4)} is the set of successive minima which gives
the Gram matrix of L M = (bij). Then, by assuming that M is reduced, the
degree of the discriminant of L is the sum of degrees of diagonal entries of M .

Since deg(dL) = 2, there are only two possibilities:

deg(b11) = deg(b22) = 0, deg(b33) = deg(b44) = 1

or
deg(b11) = deg(b22) = deg(b33) = 0, deg(b44) = 2.

However, in the latter case, L contains a unimodular ternary sublattice L′,
which is isotropic:

L′ = 〈e1, e2, e3〉.
This contradicts to the definiteness of L and hence both deg b33 and deg b44
must be 1. This conclusion coincides with the condition in the proof of the first
Proposition [2, §2]. Therefore, we get the expected result. �

Remark 2.2. Observe that we may assume that α is either 1 or δ: either
α = ω2 or αδ−1 = ω2 for some ω ∈ Fq. Take B′ = {e1, e2, ω

−1e3, ω
−1e4} to

get
φL(ω−1e3) = x+ α−1β, φL(ω−1e4) = δ(x+ α−1β) + ξ.

Furthermore, letting y = αx+ β leads Fq[x] = Fq[y] and hence, without loss of
generality, we can replace (A) with the following:

L ' L0 ⊥ L1 = 〈1,−δ〉 ⊥
(
y γ
γ −δy + ξ

)
, (B)

where δ, ξ ∈ Fq.

In fact, the discriminant of L is an element of Fq/F2
q. For convenience, we

choose a representative of dL:
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Definition 2.3. Let L be a definite quaternary lattice of the form (B). We
choose a representative of the discriminant of L to be the determinant of the
Gram matrix of the form (B) and denote

dL := δ
(
δy2 − ξy + γ2

)
.

For notational convenience, we denote

kL(y) = dL1 = −δy2 + ξy − γ2. (C)

3. Reducible discriminant case

Let L be a definite quaternary lattice such that dL is of degree 2. Then
we have two possibilities - dL is an irreducible polynomial or not. In this
section, we treat the reducible discriminant case. We prove that if L is a
definite quaternary lattice with reducible discriminant of degree 2, then L is
diagonalizable and the class number of L is one.

Lemma 3.1. Let L be a definite quaternary lattice with reducible discriminant
of degree 2. Then L is diagonalizable.

Proof. Suppose that L is of the form (B) with respect to a basis B = {e1, e2, e3,
e4}:

L ' 〈1,−δ〉 ⊥
(
y γ
γ −δy + ξ

)
,

where y = αx+ β for some α, β ∈ Fq.
By assumption, dL is reducible:

dL = δ
(
δy2 − ξy + γ2

)
= δ2(y + σ)(y + τ)

for some σ, τ ∈ Fq. Thus, we get

σ + τ = −δ−1ξ and στ = δ−1γ2.

If τ = σ, then δσ2 = γ2 and hence δ is a square, which is a contradiction.
So we may assume that τ 6= σ.

Let

b3 = γe3 + σe4 and b4 = δσe3 + γe4

and let D = {e1, e2,b3,b4}. Then, D is also a basis of L because γ2− δσ2 6= 0.
Furthermore, we get

BL(b3,b4) = δσγy + δσ2γ + γ3 + γσ(−δy + ξ)
= γσδ(σ + τ + δ−1ξ) = 0

and hence L is diagonalizable. �

Corollary 3.2. Let L be a definite quaternary lattice such that dL is of degree
2. Then it is diagonalizable if and only if dL is reducible.
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Proof. Lemma 3.1 shows one direction. So, we only need to show ‘only if’
direction: suppose L is diagonalizable:

L ' 〈c1, c2, c3, c4〉

for some c1, · · · , c4 ∈ Fq[x]. Then, dL = θ2c1c2c3c4 for some θ ∈ F×q . Since
deg dL = 2, at least two of them are of degree 0. If three of them are of degree
0, then there is a ternary sublattice L′ ' 〈c1, c2, c3〉, which is isotropic. It
contradicts to the definiteness of L. Therefore, only two of them are of degree
0 and the others are of degree 1. �

Lemma 3.3. Let K,K ′ be definite binary lattices such that

K ' 〈y, cy + d〉 , K ′ ' 〈αy, α(cy + d)〉 ,

where c, d, α ∈ Fq with c, α 6= 0. If d = 0 or α is a square, then K ' K ′.
Otherwise, K and K ′ are not in the same genus.

Proof. If α is a square, then K ' K ′ and hence they are in the same genus
trivially.

Suppose d = 0. Let K is of the form 〈y, cy + d〉 . with respect to a basis
{e1, e2}. Since K,K ′ are definite, −c can’t be a square in Fq: if −c = ω2, then
φK(ωe1 + e2) = 0. Thus, −cδ−1 is a square in Fq: c = −δω2 for some ω ∈ F×q .
Hence

K ' 〈y,−δy〉 and K ′ ' 〈αy,−αδy〉 .
Since we know that

〈1,−δ〉 ' 〈α,−αδ〉 ,
we get K ' 〈y,−δy〉 ' 〈αy,−αδy〉 ' K ′ immediately.

Suppose now that d 6= 0 and α is not a square. If K,K ′ are in the same
genus, then K,K ′ are isometric for all prime spots v ∈ MFq [y]. Take a prime
spot v ∈ MFq [y] such that ordv(cy + d) = 1. Since ordv y = 0, 〈y, cy + d〉
and 〈αy, α(cy + d)〉 are the Jordan decompositions of Kv and K ′v, respectively.
Moreover, y is a unit in Fq[x]v, we have

〈y〉 ' 〈αy〉 and 〈cy + d〉 ' 〈α(cy + d)〉 .

However, this implies that α is a square, which contradicts to our assumption.
�

Theorem 3.4. Let L be a definite quaternary lattice such that dL is of degree
2. Then the class number of L is one.

Proof. Let L, L′ be definite quaternary lattices in the same genus. Take a basis
which makes L of the form (B) and get

L ' 〈1,−δ, y,−δy + ξ〉 and L′ ' 〈1,−δ, z,−δz + ξ′〉 ,

for some y = αx+ β, z = α′x+ β′. Let z = µy + λ to get

L′ ' 〈1,−δ, µy + λ,−δµy + ζ〉 ,
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for some µ, λ, ξ, ζ ∈ Fq with µ 6= 0. Since they are in the same genus, dL/dL′

is a square of a unit:

−δy2 + ξy = ω2(−δµ2y2 + (µζ − δµλ)y + λζ)

for some ω ∈ F×q . Hence, we get

ω2µ2 = 1,
ξ

µω2
= ζ − δλ and λζ = 0.

In particular, we get
µξ = ζ − δλ. (D)

Suppose λ = 0 first. Then, we get µξ = ζ from (D) and hence

L′ ' 〈1,−δ, µy, µ(−δy + ξ)〉 .
Since L,L′ are in the same genus and L ' 〈1,−δ, y,−δy + ξ〉, two binary
lattices

〈µy, µ(−δy + ξ)〉 , 〈µy, µ(−δy + ξ)〉
are in the same genus, too. Then, by Lemma 3.3, they are globally isometric.
Therefore, L ' L′.

Suppose ζ = 0. Then, we get µξ = −δλ from (D) and hence

L′ ' 〈1,−δ, µy + λ,−δµy〉 '
〈
1,−δ, δ2(µy + λ),−δµy

〉
' 〈1,−δ,−δµ(−δy + ξ),−δµy〉 .

If −δµ is not a square, then L and L′. cannot be in the same genus by
Lemma 3.3. Therefore, −δµ must be a square and hence L ' L′. �

4. Irreducible discriminant case

In this section, we treat the irreducible discriminant case. If dL is irreducible
of degree 2, then L can’t be globally diagonalized by Corollary 3.2. However,
since all spots on Fq(x) are non-dyadic, L has an orthogonal basis at every
prime spot v ∈ Fq[x].

Lemma 4.1. Let L be a definite quaternary lattice such that dL is an irre-
ducible polynomial of degree 2. Suppose that L is of the form (B):

L ' 〈1,−δ〉 ⊥
(
y γ
γ −δy + ξ

)
, γ 6= 0.

Let kL(y) be the polynomial defined in Definition 2.3. Then the following are
the Jordan decompositions of L at a prime spot v ∈ Fq[y]:

If ξ 6= 0,

Lv '



〈
1,−δ, γ

2

y
,
kL(y)

y

〉
if v 6= y,∞〈

1,−δ, γ2

−δy + ξ
,
kL(y)

−δy + ξ

〉
if v = y

〈1,−δ, y,−δy〉 if v =∞;
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If ξ = 0,

Lv '


〈

1,−δ, γ
2

y
,
kL(y)

y

〉
if v 6= y,∞

〈1,−δ, y,−δy〉 if v =∞.

Proof. When v =∞, it is done in [2, Lemma, p.132]. So, we assume that v is
a finite prime spot.

Let {e1, e2, e3, e4} be the basis of L yielding the Gram matrix of L of the
form (B).

Assume first that v 6= y. Let

b3 =
γ

y
e3 and b4 = −γ

y
e3 + e4.

Then, {e1, e2,b3,b4} is a basis of Lv because γ 6= 0 and y is a unit in Fq[y]v.
Then, we get the desired result:

φL(b3) =
γ2

y
, φL(b4) =

kL(y)

y
and BL(b3,b4) = 0.

If v = y and ξ 6= 0, then take a set

{
e1, e2,b3 =

γ

−δy + ξ
e4,b4 = e3−

γ

−δy + ξ
e4

}
of Lv: it is a basis of Lv because γ 6= 0 and −δy + ξ is a unit in

Fq[y]v. Then, we get

φL(b3) =
γ2

−δy + ξ
, φL(b4) =

kL(y)

−δy + ξ
and BL(b3,b4) = 0.

�

Theorem 4.2. Let L be a definite quaternary lattice such that dL is an irre-
ducible polynomial of degree 2. Then the class number of L is one.

Proof. Let L be a lattice described above and L′ be a lattice in the same genus
with L. Then, by Lemma 2.1, L,L′ are of the form (B) with respect to some
y = αx+ β and z = α′x+ β′. Let z = µy + λ and get

L ' 〈1,−δ〉 ⊥
(
y γ
γ −δy + ξ

)
(E)

and

L′ ' 〈1,−δ〉 ⊥
(

z γ′

γ′ −δz + ξ′

)
' 〈1,−δ〉 ⊥

(
µy + λ γ′

γ′ −δµy + ζ

)
(F)

for some µ, λ, γ, γ′, ξ, ζ ∈ Fq. Recall

kL(y) = −δy2 + ξy − γ2

and

kL′(z) = −δz2 + ξ′z − (γ′)2.



UNIVERSAL QUATERNARY LATTICES OVER Fq [x] 611

For convenience, we rewrite kL′ with respect to y:

kL′(y) = −δ(µy+ λ)2 + ξ′(µy+ λ)− (γ′)2 = −δµ2y2 + (ζ − δλ)µy+ (λζ − γ′2)

where ζ = ξ′ − δλ.
Since dL is irreducible, we can take a prime spot v where ordv dL = 1. By

Remark 2.2, we observe that we can assume that µ is 1 or δ.
If µ = 1, we have

Lv '
〈

1,−δ, γ
2

y
,
kL(y)

y

〉
'
〈

1,−δ, γ′2

y + λ
,
kL′(y)

y + λ

〉
' L′v.

Since L and L′ are in the same genus, dL/dL′ is a unit square. Thus, we have

dL/dL′ = u ∈ (F×q )2

where u is the ratio of the leading coefficients of dL and dL′. Furthermore,
the assumption µ = 1 guarantees that the leading coefficients of dL and dL′

are same and hence dL = dL′. From (E) and (F ), we have

kL(y) = −δ−1 dL = kL′(y)

and hence

ξ = ζ − δλ and γ2 = −λζ + γ′2.

The order 1 components of the Jordan decompositions of Lv and L′v are

isometric. Moreover, since y, y + λ are units in Fq[x]v, we get ordv
γ2

y
=

ordv
γ′2

y + λ
= 0 and ordv

kL(y)

y
= ordv

kL′(y)

y + λ
= 1, we get〈

kL(y)

y

〉
'
〈
kL′(y)

y + λ

〉
=

〈
kL(y)

y + λ

〉
.

Thus, y(y + λ) must be a square in Fq[x]v and hence so is

ζy − γ2

δ
= y(y + λ) +

1

δ
kL(y) ∈

(
Fq[x]×v

)2
by the Local Square Theorem [8, 63:1].

Let
ζy − γ2

δ
=
(∑

fiv
i
)2
,

where fi’s are polynomials of degree 1. In particular, let f0 = ay + b. Then,
γ2 − ζy

δ
− f20 must be divided by v. Since ordv dL = 1 and kL(y) = −δ−1 dL,

we have

kL(y)

∣∣∣∣((ay + b)2 − ζy − γ2

δ

)
.

By comparing coefficients, we get

2abδ − ζ = −ξa2 and δb2 + γ2 = γ2a2
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and hence

ζ = ξa2 + 2abδ and λ =
ζ − ξ
δ

= 2ab+ ξ
a2 − 1

δ
= 2ab+

ξb2

γ2
.

Let {e1, e2, e3, e4} be a global basis of L yielding the Gram matrix (E) and
let

b3 = ae3 +
b

γ
e4 and b4 =

δb

γ
e3 + ae4.

Then, {e1, e2,b3,b4} is also a global basis of L and

φL (b3) = a2y + 2ab+
b2

γ2
(−δy + ξ) =

γ2a2 − δb2

γ2
y +

(
2ab+ ξ

b2

γ2

)
= y + λ,

φL (b4)=

(
δb

γ

)2

y+2abδ+a2(−δy+ξ)=−δ γ
2a2 − δb2

γ2
y+(ξa2+2abδ)=−δy+ζ

and

BL (b3,b4) =
abδ

γ
y + γa2 +

δb2

γ
+
ab

γ
(−δy + ξ) =

γ2a2 + δb2 + abξ

γ
.

Therefore, we have

L ' 〈1,−δ〉 ⊥

 y + λ
γ2a2 + δb2 + abξ

γ
γ2a2 + δb2 + abξ

γ
−δy + ζ


and hence

dL = −δ

(
(y + λ)(−δy + ζ)−

(
γ2a2 + δb2 + abξ

γ

)2
)

= −δ

(
y2 + (ζ − λδ)y −

(
γ2a2 + δb2 + abξ

γ

)2
)
.

Still, we have dL = dL′ and hence we get

γ2a2 + δb2 + abξ

γ
= ±γ′,

which confirms L ' L′ globally.
If µ = δ, by similar calculation, we also have the desired result. �

5. Universal lattices

Let L be a definite quaternary lattice. If L is universal, then the successive
minima of L are 1, δ, x and δx. Then L must be of the form (A) [2, Proposi-
tion, p.132] and hence deg dL = 2. Furthermore, as stated in [2], L must be
quaternary. In this section, we will prove that the converse is also true.
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Theorem 5.1. Let L be a definite quaternary lattice such that dL is of degree
2. Then L is universal.

Proof. We only have to show that the definite lattice L of the form (B) is
universal. Moreover, because the class number of L is one, it’s enough to show
that L is universal at every prime spot v.
Case 1 : dL is irreducible.

If v 6= y,∞, then we have the Jordan decomposition of L by Lemma 4.1:

Lv '
〈

1,−δ, γ
2

y
,
kL(y)

y

〉
,

where kL(y) = −δy2 + ξy − γ2. Since 1,−δ and
γ2

y
are units,

〈
1,−δ, γ

2

y

〉
is

universal and hence so is Lv.
If v = y, suppose that the Jordan decomposition of L is of the form

〈1,−δ, f(y), g(y)〉 ,
where f(y), g(y) ∈ Fq[y]y. Because −δf(y)g(y) = ω2kL(y) and kL(y) is not
divided by y, f(y) and g(y) are units in Fq[y]y. Therefore 〈1,−δ, f(y)〉 is
universal and hence so is Ly.

If v = ∞, take an arbitrary polynomial f(y) ∈ Fq[y] and M to be a lattice
defined as follows:

M := 〈1,−δ, y,−δy + ξ,−f(y)〉 .
Since rank(M) = 5, M is indefinite and hence M∞ is isotropic. So, there is a
vector

b = (b1, b2, b3, b4, b5) ∈ (Fq[y])5

such that φM (b) = 0. However, since L is definite, L∞ is anisotropic and
hence b5 must be non-zero. This result guarantees that L∞ represents f(y)
over Fq[x]∞. Therefore L∞ is universal.

Case 2 : dL is reducible.
If dL is reducible, then L is diagonal by Lemma 3.1: if dL = −δ2(y+σ)(y+

τ), we get
L ' 〈1,−δ, α′(y + σ),−δα′(y + σ − β′)〉 ,

where α′ = γ2 − δσ2 and β′ = δ2σ(σ− τ)2. Replacing α′(y+ σ) by y again, we
obtain

L ' 〈1,−δ, y,−δy + ζ〉 .
(1) If v 6= y, −δy+ζ or∞, then both y and −δy+ζ are units. Therefore Lv

contains universal sublattice 〈1,−δ, y〉 and 〈1,−δ,−δy + ζ〉 and hence
Lv is also universal.

(2) If v = ∞, the same argument as in the irreducible case proves the
universality of L∞.

(3) If v = y and ζ 6= 0. Then −δy+ ζ is a unit. Therefore 〈1,−δ,−δy + ζ〉
is universal and hence so is Lv.
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(4) Suppose that v = y and ζ = 0. Let K be a sublattice of L defined as
follows:

K := 〈1,−δ,−δy〉 .

If Kv represents all f(y) ∈ Fq[y], we are done. Suppose there is a
polynomial

f(y) = a0 + a0y + · · ·+ amy
m ∈ Fq[y]

which is not represented by Kv. Then, by Lemma 2.1 (2) in [6, §2],
vv(f(y)) = m is odd and −am ∈ (Fq)2 for v 6= ∞. (Note that
Lemma 2.1 (1) in [6, §2] is the case not represented by K∞.)

Let η = (−am)−1 and define K ′ :=
〈
1,−δ,−δ(−δ−1ηy)

〉
. Then since

L ' 〈1,−δ, y,−δy〉 and 〈y,−δy〉 represents εy for all ε ∈ F×q , K ′ is also
a sublattice of L. If we rewrite f(y) in the form

f(y) = b0(−δ−1ηy)0 + · · ·+ bm(−δ−1ηy)m,

then, since bm(−δ−1ηy)m = amy
m and m is odd,

−bm = −(−amδ)mam = (a(m+1)/2
m δ(m−1)/2)2δ.

Therefore, −bm is not a square. So f(y) is represented by K ′v and hence
by Lv.

(5) If v = −δy+ ζ, then replacing −δy+ ζ by z and get the same result by
(3) and (4).

�

Example 5.2. Let q = 5 and

L =

(
1 + 3x2 2x− 2x2

2x− 2x2 −2x2 − 2x4

)
⊥
(
−x x
x x

)
.

Then,

L∞ ' 〈1,−2, x, 2x〉

and hence L is definite. Moreover, since dL = x2, So, L is universal and
diagonalizable.

Corollary 5.3. The Four Conjecture is true.

Proof. Let L be a definite quaternary lattice which represents 1,−δ, x, and
−δx. Then, by [2],

L ' 〈1,−δ〉 ⊥
(
αx+ β γ
γ −δαx+ ξ

)
.

Since deg(dL) = 2, L is universal. �
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