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PROPERTIES OF HYPERHOLOMORPHIC FUNCTIONS

IN CLIFFORD ANALYSIS

Su Jin Lim and Kwang Ho Shon*

Abstract. The noncommutative extension of the complex numbers for

the four dimensional real space is a quaternion. R. Fueter, C. A. Deav-

ours and A. Subdery have developed a theory of quaternion analysis. M.
Naser and K. Nôno have given several results for integral formulas of hy-

perholomorphic functions in Clifford analysis. We research the properties
of hyperholomorphic functions on C2 × C2.

1. Introduction

Let m ∈ N, m ≥ 1, and let An be the Clifford algebra constructed over a
real anti-Euclidean quadratic n-dimensional vector space, n ≥ m. Then An
is a 2n-dimensional real vector space with basis {eA : A ⊆ {1, ..., n}}, where
eφ = e0 = 1, eA = eα1

...eαh
, A = {α1, ..., αh}, α1 < α2 < ... < αh; eαj

eαk
=

−eαk
eαj

when j 6= k and e2
αj

= −1, j = 1, ..., n. For a =
∑
A aAeA ∈ An, we

put a =
∑
A aAeA where for A 6= φ, eA = eαh

...eα1
, with ei = −ei, i = 1, ..., n,

while for A = φ, e0 = e0. If x = (x0, x1, ..., xm) ∈ Rm+1 is identified with
x = x0 +x1e1 + ...+xmem, then Rm+1 may be considered as a subspace of An.

2. Notations on Quaternion analysis

The field T = A2 of quaternions

z = x0 + ix1 + jx2 + kx3, x0, x1, x2, x3 ∈ R (1)

is a four dimensional non-commutative R-field of real numbers such that its
four base elements 1, i, j and k satisfy the following :

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j. (2)

The element 1 is the identity of T . Identifying the element i with the imaginary
unit

√
−1 in the C-field of complex numbers, a quaternion z given by (1) is
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regarded as z = z1 + z2j ∈ T where z1 := x0 + ix1 and z2 := x2 + ix3 are
complex numbers in C. Thus, we identify T with C2.

For the equation z3 + 8 = 0 in the complex plane C, the 3 solutions are
−2, 1 +

√
3i, 1 −

√
3i in C. In the quaternion T , the equation has solutions

which forms z = a + bi + cj + dk (a, b, c, d ∈ R). Then it satisfies z3 = (a3 −
3ab2−3ac2−3ad2)+(3a2b−b3−bc2−bd2)i+(3a2c−b2c−c3−cd2)j+(3a2d−
b2d−c2d−d3)k. That is, a3−3ab2−3ac2−3ad2 = −8, 3a2b−b3−bc2−bd2 = 0,
3a2c− b2c− c3− cd2 = 0, 3a2d− b2d− c2d−d3 = 0. Thus it has infinitely many
solutions z = 1 + bi+ cj + dk with b2 + c2 + d2 = 3 in T .

We define the quaternionic multiplication of two quaternions z = z1 + z2j
and w = w1 + w2j is defined by

zw = (z1w1 − z2w2) + (z1w2 + z2w1)j,

where w1 and w2 are complex conjugations of w1 and w2, respectively. The
quaternionic conjugate z∗ and the absolute value |z| of z = z1 + z2j are given
by the following:

z∗ = z1 − z2j, |z| =
√
|z1|2 + |z2|2.

And every non-zero quaternion z = z1 + z2j has a unique inverse z−1 given
by z−1 = z∗/|z|2.

We use the following quaternionic differential operators :

∂

∂z
=

∂

∂z1
− j ∂

∂z2
=

1

2
(
∂

∂x0
− i ∂

∂x1
− j ∂

∂x2
+ k

∂

∂x3
),

∂

∂z∗
=

∂

∂z1
+ j

∂

∂z2
=

1

2
(
∂

∂x0
+ i

∂

∂x1
+ j

∂

∂x2
− k ∂

∂x3
)

where ∂/∂z1, ∂/∂z1, ∂/∂z2, and ∂/∂z2 are usual differential operators used in
complex analysis. So, we have

∂

∂z1
j =

1

2
(
∂

∂x0
− i ∂

∂x1
)j =

1

2
(j

∂

∂x0
− ij ∂

∂ x1
) =

1

2
(j

∂

∂x0
+ ji

∂

∂x1
) = j

∂

∂z1
,

∂

∂z1
j =

1

2
(
∂

∂x0
+ i

∂

∂x1
)j =

1

2
(j

∂

∂x0
+ ij

∂

∂x1
) =

1

2
(j

∂

∂x0
− ji ∂

∂x1
) = j

∂

∂z1
.

In the space C2 × C2 ∼= T × T of two quaternion variables z = z1 + z2j
and w = w1 + w2j, where z1 = x0 + ix1, z2 = x2 + ix3, w1 = y0 + iy1 and
w2 = y2 + iy3 in C, we use the quaternion differential operators ∂

∂z , ∂
∂z∗ and

∂

∂w
=

∂

∂w1
− j ∂

∂w2
,

∂

∂w∗
=

∂

∂w1
+ j

∂

∂w2
.

Let D be an open set in C2 and f(z) = f1(z) + f2(z)j be a function defined
in D with values in T , where z = (z1, z2) and f1(z) and f2(z) are complex
valued functions.
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Definition 1. Let D be an open set in C2. A function f(z) = f1(z) + f2(z)j
is said to be L(R)-hyperholomorphic in D, if
(a) f1 and f2 are continuously differentiable in D,
(b) ∂

∂z∗ f = 0 (f ∂
∂z∗ = 0) in D.

The above equations (b) of the definition 1 operate to f as follows

∂

∂z∗
f = (

∂

∂z1
+ j

∂

∂z2
)(f1 + f2j) = (

∂f1

∂z1
− ∂f2

∂z2
) + (

∂f2

∂z1
+
∂f1

∂z2
)j,

(f
∂

∂z∗
= (f1 + f2j)(

∂

∂z1
+ j

∂

∂z2
) = (

∂f1

∂z1
− ∂f2

∂z2
) + (

∂f2

∂z1
+
∂f1

∂z2
)j).

The function f(z) = f1(z) + f2(z)j is L-hyperholomorphic function in D ⊂
C2, simply we say that f(z) is a hyperholomorphic function on D ⊂ C2. The
above equation for hyperholomorphic function f(z) is equivalent to the follow-
ing systems of equations :

∂f1

∂z1
=
∂f2

∂z2
,
∂f2

∂z1
= −∂f1

∂z2
. (3)

We say that the equations (3) are the corresponding q-Cauchy-Riemann
equations in T .

Let Ω be an open set in C2 × C2 and f(z, w) = f1(z, w) + f2(z, w)j be a
function defined in Ω with values in T ×T , where (z, w) = (z1, z2, w1, w2) ∈ Ω.

Definition 2. Let Ω be an open set in C2×C2. A function f(z, w) = f1(z, w)+
f2(z, w)j is said to be hyperholomorphic in Ω, if
(a) f1 and f2 are continuously differentiable in Ω,
(b) ∂

∂z∗ f = 0 and f ∂
∂w∗ = 0 in Ω.

The above equations (b) of the definition 2 are equivalent to the following
systems of equations :

∂f1

∂z1
=
∂f2

∂z2
,
∂f2

∂z1
= −∂f1

∂z2
,
∂f1

∂w1
=
∂f2

∂w2
,
∂f2

∂w1
= − ∂f1

∂w2
. (4)

These are the corresponding q-Cauchy-Riemann equations in T × T .

3. Properties of hyperholomorphic functions on T

M. Naser [6] proved the following theorems.

Theorem 3.1. ([6]) For any complex harmonic function f1(z) in a domain of
holomorphy D ⊂ C2, we can find a function f2(z) so that f(z) = f1(z)+f2(z)j
is a hyperholomorphic function in D.

Example 3.2. If we know a complex valued harmonic function

f1(z) =
z1

|z|4
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in a domain of holomorphy D ⊂ C2, then we can find a hyper-conjugate har-
monic function f2(z) of f1(z) in D. That is

f2(z) = − z2

|z|4
,

and f(z) = f1(z) + f2(z)j is a hyperholomorphic function in D.

Theorem 3.3. ([6]) Let κ = dz1∧dz2∧dz2−dz1∧dz1∧dz2j and let a function
f(z) is hyperholomorphic in a domain G of T . Then for any domain D ⊂ G
with smooth boundary ∂D, ∫

∂D

κf = 0

where κf is the quaternion product of the form κ on the function f(z) = f1(z)+
f2(z)j.

K. Nôno [7] obtained the following theorem.

Theorem 3.4. ([7]) Let G be a bounded domain in C2 with C1-bounbary and
f(z) = f1(z) + f2(z)j be a continuous function on ∂G. Then the function

g(z) =
1

4π2

∫
∂G

−{(ζ1 − z1)− (ζ2 − z2)j}
(|ζ1 − z1|2 + |ζ2 − z2|2)2

κζf(ζ), z ∈ C2 − ∂G

where κζ = dζ1 ∧ dζ2 ∧ dζ2 − dζ1 ∧ dζ1 ∧ dζ2j is hyperholomorphic in C2 − ∂G.

4. Properties of hyperholomorphic functions on T × T

Example 4.1. If we know a complex valued harmonic function

f1(z, w) =
z1z1 + z2z2 + w1w1 + w2w2

|zw|2

in a pseudoconvex domain Ω ⊂ C2 ×C2, then by the theorem of [5: Kajiwara-
Li-Shon], we can find a hyper-conjugate harmonic function f2(z, w) of f1(z, w)
in Ω. That is

f2(z, w) =
z1z1 − z2z2

|z|2z1z2
+

1

w1w2
,

and f(z, w) = f1(z, w) + f2(z, w)j is a hyperholomorphic function in Ω.

Theorem 4.2. Let κ1 = dz1 ∧ dz2 ∧ dz2 − dz1 ∧ dz1 ∧ dz2j, κ2 = dw1 ∧ dw2 ∧
dw2 − dw1 ∧ dw1 ∧ dw2j and let a function f(z, w) is hyperholomorphic in a
domain G of T × T . Then for any domain Ω ⊂ G with smooth boundary ∂Ω,∫

∂Ω

(κ1fκ2) = 0

where κ1fκ2 is the quaternion product of forms κ1 and κ2 on the function
f(z, w) = f1(z, w) + f2(z, w)j.
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Proof. By the rule of the quaternion multiplication, we have

κ1fκ2 = f1dz1 ∧ dz2 ∧ dz2 ∧ dw1 ∧ dw2 ∧ dw2

− f1dz1 ∧ dz2 ∧ dz2 ∧ dw1 ∧ dw1 ∧ dw2j

+ f1dz1 ∧ dz1 ∧ dz2 ∧ dw1 ∧ dw1 ∧ dw2

+ f1dz1 ∧ dz1 ∧ dz2 ∧ dw1 ∧ dw2 ∧ dw2j

− f2dz1 ∧ dz2 ∧ dz2 ∧ dw1 ∧ dw1 ∧ dw2

− f2dz1 ∧ dz2 ∧ dz2 ∧ dw1 ∧ dw2 ∧ dw2j

+ f2dz1 ∧ dz1 ∧ dz2 ∧ dw1 ∧ dw2 ∧ dw2

− f2dz1 ∧ dz1 ∧ dz2 ∧ dw1 ∧ dw1 ∧ dw2j.

Hence

d(κ1fκ2) = (−∂f1

∂z1
+
∂f2

∂z2
)dz1 ∧ dz1 ∧ dz2 ∧ dz2 ∧ dw1 ∧ dw2 ∧ dw2

+ (
∂f1

∂w1
− ∂f2

∂w2
)dz1 ∧ dz2 ∧ dz2 ∧ dw1 ∧ dw1 ∧ dw2 ∧ dw2

+ (
∂f1

∂z2
+
∂f2

∂z1
)dz1 ∧ dz1 ∧ dz2 ∧ dz2 ∧ dw1 ∧ dw1 ∧ dw2

+ (
∂f1

∂w2
+
∂f2

∂w1
)dz1 ∧ dz1 ∧ dz2 ∧ dw1 ∧ dw1 ∧ dw2 ∧ dw2

+ (
∂f1

∂z1
− ∂f2

∂z2
)dz1 ∧ dz1 ∧ dz2 ∧ dz2 ∧ dw1 ∧ dw1 ∧ dw2j

+ (
∂f1

∂w2
+
∂f2

∂w1
)dz1 ∧ dz2 ∧ dz2 ∧ dw1 ∧ dw1 ∧ dw2 ∧ dw2j

+ (
∂f1

∂z2
+
∂f2

∂z1
)dz1 ∧ dz1 ∧ dz2 ∧ dz2 ∧ dw1 ∧ dw2 ∧ dw2j

+ (− ∂f1

∂w1
+
∂f2

∂w2
)dz1 ∧ dz1 ∧ dz2 ∧ dw1 ∧ dw1 ∧ dw2 ∧ dw2j.

From the corresponding q-Cauchy-Riemann equations (4), we have d(κ1fκ2) =
0. By Stoke’s theorem we have∫

∂Ω

κ1fκ2 =

∫
Ω

d(κ1fκ2) = 0.

�

Theorem 4.3. ([9]) Let the function f(z, w) = f1(z, w) + f2(z, w)j is hy-
perholomorphic in bounded domains U and V in C2 with C1-boundaries and
continuously differentiable in a neighborhood of U × V . Then

f(z, w) =
1

(4π2)2

∫
∂U

∫
∂V

H(z, ζ)κζf(ζ, η)κηH(w, η) (5)
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where

H(z, ζ) =
(ζ1 − z1)− (ζ2 − z2)j

|ζ − z|4
, H(w, η) =

(η1 − w1)− (η2 − w2)j

|η − w|4

in U × V .

Proposition 4.4. The kernel of the integral formula (5),

K(ζ, z, η, w) =
(ζ1 − z1)− (ζ2 − z2)j

|ζ − z|4
· (η1 − w1)− (η2 − w2)j

|η − w|4

is hyperholomorphic with respect to ζ, z, η and w for ζ 6= z, η 6= w.

Proof. It suffices to show that the functions K(0, z, 0, w) and K(ζ, 0, η, 0) are

hyperholomorphic in C2 × C2 − {0}. Since K(0, z, 0, w) = z1−z2j
|z|4 · w1−w2j

|w|4 , we

have ∂
∂z∗K(0, z, 0, w) = 0 and K(0, z, 0, w) ∂

∂w∗ = 0. �

Theorem 4.5. Let U and V be bounded domains in T ×T with C1-boundaries
and f(z, w) = f1(z, w) + f2(z, w)j be a continuous function on ∂U × ∂V. Then
the function

g(z, w) =
1

(4π2)2

∫
∂U

∫
∂V

H(z; ζ)κζf(ζ, η)κηH(w; η)

is hyperholomorphic in T × T − {∂U × ∂V }.

Proof. By the differentiation under the integral sign and Proposition 4.4, we
have

∂

∂z∗
g(z, w) =

∂

∂z∗
{ 1

(4π2)2

∫
∂U

∫
∂V

(z1 − z2j)

(|z1|2 + |z2|2)2
· (w1 − w2j)

(|w1|2 + |w2|2)2
}

=
1

(4π2)2

∫
∂U

∫
∂V

∂

∂z∗
{ (z1 − z2j)

(|z1|2 + |z2|2)2
· (w1 − w2j)

(|w1|2 + |w2|2)2
}

= 0

and

g(z, w)
∂

∂w∗
= { 1

(4π2)2

∫
∂U

∫
∂V

(z1 − z2j)

(|z1|2 + |z2|2)2
· (w1 − w2j)

(|w1|2 + |w2|2)2
} ∂

∂w∗

=
1

(4π2)2

∫
∂U

∫
∂V

{ (z1 − z2j)

(|z1|2 + |z2|2)2
· (w1 − w2j)

(|w1|2 + |w2|2)2
} ∂

∂w∗

= 0

in T × T − {∂U × ∂V }.
Hence, g(z, w) is hyperholomorphic in T × T − {∂U × ∂V }. �
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[7] K. Nôno, Hyperholomorphic functions of a quaternion variable, Bull. Fukuoka Univ.
Ed. 32 (1983), 21–37.

[8] , Characterization of domains of holomorphy by the existence of hyper-conjugate

harmonic functions, Rev. Roumaine Math. Pures Appl. 31 (1986), no. 2, 159–161.
[9] , Domains of Hyperholomorphic in C2 ×C2, Bull. Fukuoka Univ. Ed. 36 (1987),

1–9.
[10] B. V. Shabat, Introduction to Complex Analysis [in Russian], Nauka, Moscow (1969).

[11] A. Sudbery, Quaternionic analysis, Math. Proc. Camb. Phil. Soc. 85 (1979), 199–225.

Su Jin Lim

Department of Mathematics, Pusan National University, Busan 609-735, Korea
E-mail address: sjlim@pusan.ac.kr

Kwang Ho Shon
Department of Mathematics, Pusan National University, Busan 609-735, Korea

E-mail address: khshon@pusan.ac.kr


