DOI QR코드

DOI QR Code

Model Systems in Radiation Biology: Implication for Preclinical Study of Radiotherapy

방사선 생물학을 위한 모델 시스템: 방사선치료의 전임상 연구

  • Kim, Wanyeon (Department of Biological Sciences, College of Natural Sciences, Pusan National University) ;
  • Seong, Ki Moon (Division of Radiation Effect Research, Radiation Health Research Institute, Korea Hydro & Nuclear Power Co., Ltd.) ;
  • Yang, Hee Jung (Department of Biological Sciences, College of Natural Sciences, Pusan National University) ;
  • Youn, HyeSook (Department of Bioscience & Biotechnology/Institute of Bioscience, Sejong University) ;
  • Youn, BuHyun (Department of Biological Sciences, College of Natural Sciences, Pusan National University)
  • 김완연 (부산대학교 자연과학대학 생명과학과) ;
  • 성기문 ((주)한국수력원자력 방사선보건연구원 영향연구팀) ;
  • 양희정 (부산대학교 자연과학대학 생명과학과) ;
  • 윤혜숙 (세종대학교 생 명과학대학 생명공학부 생명공학과) ;
  • 윤부현 (부산대학교 자연과학대학 생명과학과)
  • Received : 2012.09.19
  • Accepted : 2012.11.15
  • Published : 2012.11.30

Abstract

In radiation biology, analysis of various mechanisms in response to radiation has been accomplished with the use of model organisms. These model organisms are powerful tools for providing a biologically intact in vivo environment to assess physiological and pathophysiological processes affected by radiation. Accumulated data using these models have been applied to human clinical studies (including the evaluation of radiotherapeutic efficacy) and discovery of radiotherapy reagents. However, there are few studies to provide overall integrated information about these useful model organisms. Thus, this review summarizes the results of radiation biology studies using four well-known model organisms: yeast, Caenorhabditis elegans, Drosophila melanogaster, and mice.

방사선 생물학에서 방사선에 대한 반응으로 매개되는 다양한 기작에 대한 분석을 위해 여러 종류의 모델 생물체를 사용해 왔다. 모델 생물체는 생물학적으로 온전한 in vivo 환경을 제공할 수 있기 때문에 방사선에 의해 발생되는 세포 내 현상은 물론 생리적인 현상이나 병리학적인 현상을 규명하는 데 있어서 모델 생물체를 사용하는 것은 효과적인 방법이 될 수 있다. 지금까지 축적된, 모델 생물체를 이용한 방사선 생물학적 연구결과들은 새로운 방사선치료 보조제의 개발, 방사선치료 효율 증진 등에 적용되어 여러 질병에 대한 임상연구의 기초가 되어왔다. 이렇게 유용하게 사용된 여러 모델 생물체에 있어서, 각각의 모델에 대한 개별적인 정보에 대한 연구는 다양한 방면에서 이루어지고 있지만, 통합적인 비교, 분석 및 정리를 한 경우는 부족한 실정이다. 따라서, 본 논문에서는 방사선 생물학에서 지금까지 많이 사용된 모델 생물체 4종(효모, 예쁜꼬마선충, 초파리, 생쥐)에 대해 각 생물체가 갖는 모델로써의 특징과 장단점 그리고 방사선 생물학 연구에 이용된 사례 등을 서술하고자 한다.

Keywords

References

  1. An, J. H., Kim, J. and Seong, J. 2004. Redox signaling by ionizing radiation in mouse liver. Ann. N. Y. Acad. Sci. 1030, 86-94. https://doi.org/10.1196/annals.1329.011
  2. Anjaria, K. B., Bhat, N. N., Shirsath, K. B. and Sreedevi, B. 2011. Differential modifying effects of food additive butylated hydroxytoluene toward radiation and 4-nitro-quinoline 1-oxide-induced genotoxicity in yeast. J. Environ. Pathol. Toxicol. Oncol. 30, 189-197. https://doi.org/10.1615/JEnvironPatholToxicolOncol.v30.i3.20
  3. Anjaria, K. B. and Rao, B. S. 2001. Effect of caffeine on the genotoxic effects of gamma radiation and 4-NQO in diploid yeast. J. Environ. Pathol. Toxicol. Oncol. 20, 39-45.
  4. Ao, X., Lubman, D. M., Davis, M. A., Xing, X., Kong, F. M., Lawrence, T. S. and Zhang, M. 2008. Comparative proteomic analysis of radiation-induced changes in mouse lung: fibrosis-sensitive and -resistant strains. Radiat. Res. 169, 417-425. https://doi.org/10.1667/RR1173.1
  5. Arias, A. M. 2008. Drosophila melanogaster and the development of biology in the 20th century. Methods Mol. Biol. 420, 1-25. https://doi.org/10.1007/978-1-59745-583-1_1
  6. Barjaktarovic, Z., Schmaltz, D., Shyla, A., Azimzadeh, O., Schulz, S., Haagen, J., Dorr, W., Sarioglu, H., Schafer, A., Atkinson, M. J., Zischka, H. and Tapio, S. 2011. Radiation-induced signaling results in mitochondrial impairment in mouse heart at 4 weeks after exposure to X-rays. PLoS One 6, e27811. https://doi.org/10.1371/journal.pone.0027811
  7. Bennett, C. B., Lewis, L. K., Karthikeyan, G., Lobachev, K. S., Jin, Y. H., Sterling, J. F., Snipe, J. R. and Resnick, M. A. 2001. Genes required for ionizing radiation resistance in yeast. Nat. Genet. 29, 426-434. https://doi.org/10.1038/ng778
  8. Bilen, J. and Bonini, N. M. 2005. Drosophila as a model for human neurodegenerative disease. Annu. Rev. Genet. 39, 153-171. https://doi.org/10.1146/annurev.genet.39.110304.095804
  9. Bol'shakov, M. A., Librikht, O. K., Kniazeva, I. R., El'chaninov, A. A., Klimov, A. I. and Rostov, V. V. 2007. Life expectency and fertility of postembrio stage drosophila after the pulse-periodic X-ray irradiation. Radiats. Biol. Radioecol. 47, 22-27.
  10. Boreham, D. R., Trivedi, A., Weinberger, P. and Mitchel, R. E. 1990. The involvement of topoisomerases and DNA polymerase I in the mechanism of induced thermal and radiation resistance in yeast. Radiat. Res. 123, 203-212. https://doi.org/10.2307/3577546
  11. Botstein, D. and Fink, G. R. 2011. Yeast: an experimental organism for 21st Century biology. Genetics 189, 695-704. https://doi.org/10.1534/genetics.111.130765
  12. Botstein, D. and Fink, G. R. 1988. Yeast: an experimental organism for modern biology. Science 240, 1439-1443. https://doi.org/10.1126/science.3287619
  13. Boulton, S. J., Gartner, A., Reboul, J., Vaglio, P., Dyson, N., Hill, D. E. and Vidal, M. 2002. Combined functional genomic maps of the C. elegans DNA damage response. Science 295, 127-131. https://doi.org/10.1126/science.1065986
  14. Brathwaite, O., Bayona, W. and Newcomb, E. W. 1992. p53 mutations in C57BL/6J murine thymic lymphomas induced by gamma-irradiation and N-methylnitrosourea. Cancer Res. 52, 3791-3795.
  15. Brenner, S. 1974. The genetics of Caenorhabditis elegans. Genetics 77, 71-94.
  16. Brodsky, M. H., Nordstrom, W., Tsang, G., Kwan, E., Rubin, G. M. and Abrams, J. M. 2000. Drosophila p53 binds a damage response element at the reaper locus. Cell 101, 103-113. https://doi.org/10.1016/S0092-8674(00)80627-3
  17. Cao, C., Albert, J. M., Geng, L., Ivy, P. S., Sandler, A., Johnson, D. H. and Lu, B. 2006. Vascular endothelial growth factor tyrosine kinase inhibitor AZD2171 and fractionated radiotherapy in mouse models of lung cancer. Cancer Res. 66, 11409-11415. https://doi.org/10.1158/0008-5472.CAN-06-2414
  18. Carr, A. M. 1994. Radiation checkpoints in model systems. Int. J. Radiat. Biol. 66, S133-139. https://doi.org/10.1080/09553009414551031
  19. Chang, H. C. and Rubin, G. M. 1997. 14-3-3 epsilon positively regulates Ras-mediated signaling in Drosophila. Genes Dev. 11, 1132-1139. https://doi.org/10.1101/gad.11.9.1132
  20. Chen, F., Hersh, B. M., Conradt, B., Zhou, Z., Riemer, D., Gruenbaum, Y. and Horvitz, H. R. 2000. Translocation of C. elegans CED-4 to nuclear membranes during programmed cell death. Science 287, 1485-1489. https://doi.org/10.1126/science.287.5457.1485
  21. Chen, J., Xie, C., Tian, L., Hong, L., Wu, X. and Han, J. 2010. Participation of the p38 pathway in Drosophila host defense against pathogenic bacteria and fungi. Proc. Natl. Acad. Sci. USA 107, 20774-20779. https://doi.org/10.1073/pnas.1009223107
  22. Day, T. K., Hooker, A. M., Zeng, G. and Sykes, P. J. 2007. Low dose X-radiation adaptive response in spleen and prostate of Atm knockout heterozygous mice. Int. J. Radiat. Biol. 83, 523-534. https://doi.org/10.1080/09553000701420582
  23. de Bono, M. and Bargmann, C. I. 1998. Natural variation in a neuropeptide Y receptor homolog modifies social behavior and food response in C. elegans. Cell 94, 679-689. https://doi.org/10.1016/S0092-8674(00)81609-8
  24. Degryse, A. L. and Lawson, W. E. 2011. Progress toward improving animal models for idiopathic pulmonary fibrosis. Am. J. Med. Sci. 341, 444-449. https://doi.org/10.1097/MAJ.0b013e31821aa000
  25. Dietzl, G., Chen, D., Schnorrer, F., Su, K. C., Barinova, Y., Fellner, M., Gasser, B., Kinsey, K., Oppel, S., Scheiblauer, S., Couto, A., Marra, V., Keleman, K. and Dickson, B. J. 2007. A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 448, 151-156. https://doi.org/10.1038/nature05954
  26. Dileto, C. L. and Travis, E. L. 1996. Fibroblast radiosensitivity in vitro and lung fibrosis in vivo: comparison between a fibrosis-prone and fibrosis-resistant mouse strain. Radiat. Res. 146, 61-67. https://doi.org/10.2307/3579396
  27. Dolling, J. A., Boreham, D. R., Bahen, M. E. and Mitchel, R. E. 2000. Role of RAD9-dependent cell-cycle checkpoints in the adaptive response to ionizing radiation in yeast, Saccharomyces cerevisiae. Int. J. Radiat. Biol. 76, 1273-1279. https://doi.org/10.1080/09553000050134500
  28. Down, J. D. and Steel, G. G. 1983. The expression of early and late damage after thoracic irradiation: a comparison between CBA and C57B1 mice. Radiat. Res. 96, 603-610. https://doi.org/10.2307/3576125
  29. Down, J. D., Tarbell, N. J., Warhol, M. and Mauch, P. 1988. Dose-limiting complications from upper half body irradiation in C3H mice. Int. J. Radiat. Oncol. Biol. Phys. 14, 483-489. https://doi.org/10.1016/0360-3016(88)90264-7
  30. Down, J. D. and Yanch, J. C. 2010. Identifying the high radiosensitivity of the lungs of C57L mice in a model of total- body irradiation and bone marrow transplantation. Radiation Res. 174, 258-263. https://doi.org/10.1667/RR2149.1
  31. Ducau, J., Bregliano, J. C. and de La Roche Saint-Andre, C. 2000. Gamma-irradiation stimulates homology-directed DNA double-strand break repair in Drosophila embryo. Mutat. Res. 460, 69-80. https://doi.org/10.1016/S0921-8777(00)00017-3
  32. Edwards, A., Gladstone, M., Yoon, P., Raben, D., Frederick, B. and Su, T. T. 2011. Combinatorial effect of maytansinol and radiation in Drosophila and human cancer cells. Dis. Model. Mech. 4, 496-503. https://doi.org/10.1242/dmm.006486
  33. Fairlie, W. D., Perugini, M. A., Kvansakul, M., Chen, L., Huang, D. C. and Colman, P. M. 2006. CED-4 forms a 2 : 2 heterotetrameric complex with CED-9 until specifically displaced by EGL-1 or CED-13. Cell Death Differ. 13, 426-434. https://doi.org/10.1038/sj.cdd.4401762
  34. Fasullo, M., Bennett, T., AhChing, P. and Koudelik, J. 1998. The Saccharomyces cerevisiae RAD9 checkpoint reduces the DNA damage-associated stimulation of directed translocations. Mol. Cell. Biol. 18, 1190-1200.
  35. Finnberg, N., Gruber, J. J., Fei, P., Rudolph, D., Bric, A., Kim, S. H., Burns, T. F., Ajuha, H., Page, R., Wu, G. S., Chen, Y., McKenna, W. G., Bernhard, E., Lowe, S., Mak, T. and El-Deiry, W. S. 2005. DR5 knockout mice are compromised in radiation-induced apoptosis. Mol. Cell. Biol. 25, 2000-2013. https://doi.org/10.1128/MCB.25.5.2000-2013.2005
  36. Friedman, D. B. and Johnson, T. E. 1988. A mutation in the age-1 gene in Caenorhabditis elegans lengthens life and reduces hermaphrodite fertility. Genetics 118, 75-86.
  37. Fryxell, K. J. and Kumar, J. P. 1993. Characterization of the radiation-sensitive stage in the development of the compound eye of Drosophila. Mutat. Res. 285, 181-189. https://doi.org/10.1016/0027-5107(93)90105-O
  38. Fu, Q., Berbee, M., Wang, W., Boerma, M., Wang, J., Schmid, H. A. and Hauer-Jensen, M. 2011. Preclinical evaluation of Som230 as a radiation mitigator in a mouse model: postexposure time window and mechanisms of action. Radiat. Res. 175, 728-735. https://doi.org/10.1667/RR2507.1
  39. Gartner, A., Milstein, S., Ahmed, S., Hodgkin, J. and Hengartner, M. O. 2000. A conserved checkpoint pathway mediates DNA damage--induced apoptosis and cell cycle arrest in C. elegans. Mol. Cell 5, 435-443. https://doi.org/10.1016/S1097-2765(00)80438-4
  40. Goffeau, A., Barrell, B. G., Bussey, H., Davis, R. W., Dujon, B., Feldmann, H., Galibert, F., Hoheisel, J. D., Jacq, C., Johnston, M., Louis, E. J., Mewes, H. W., Murakami, Y., Philippsen, P., Tettelin, H. and Oliver, S. G. 1996. Life with 6000 genes. Science 274, 546, 563-547.
  41. Greiss, S., Schumacher, B., Grandien, K., Rothblatt, J. and Gartner, A. 2008. Transcriptional profiling in C. elegans suggests DNA damage dependent apoptosis as an ancient function of the p53 family. BMC Genomics 9, 334. https://doi.org/10.1186/1471-2164-9-334
  42. Gridley, D. S., Makinde, A. Y., Luo, X., Rizvi, A., Crapo, J. D., Dewhirst, M. W., Moeller, B. J., Pearlstein, R. D. and Slater, J. M. 2007. Radiation and a metalloporphyrin radioprotectant in a mouse prostate tumor model. Anticancer Res. 27, 3101-3109.
  43. Guipaud, O., Holler, V., Buard, V., Tarlet, G., Royer, N., Vinh, J. and Benderitter, M. 2007. Time-course analysis of mouse serum proteome changes following exposure of the skin to ionizing radiation. Proteomics 7, 3992-4002. https://doi.org/10.1002/pmic.200601032
  44. Hafen, E. 2004. Cancer, type 2 diabetes, and ageing: news from flies and worms. Swiss Med. Wkly. 134, 711-719.
  45. Hariri, G., Yan, H., Wang, H., Han, Z. and Hallahan, D. E. 2010. Radiation-guided drug delivery to mouse models of lung cancer. Clin. Cancer Res. 16, 4968-4977. https://doi.org/10.1158/1078-0432.CCR-10-0969
  46. Hartman, P. S. 1985. Epistatic interactions of radiation-sensitive (rad) mutants of Caenorhabditis elegans. Genetics 109, 81-93.
  47. Hartman, P. S., Simpson, V. J., Johnson, T. and Mitchell, D. 1988. Radiation sensitivity and DNA repair in Caenorhabditis elegans strains with different mean life spans. Mutat. Res. 208, 77-82. https://doi.org/10.1016/S0165-7992(98)90003-3
  48. Helfand, S. L. and Rogina, B. 2003. Genetics of aging in the fruit fly, Drosophila melanogaster. Annu. Rev. Genet. 37, 329-348. https://doi.org/10.1146/annurev.genet.37.040103.095211
  49. Herman, R. K., Albertson, D. G. and Brenner, S. 1976. Chromosome rearrangements in Caenorhabditis elegans. Genetics 83, 91-105.
  50. Hobert, O. 2003. Behavioral plasticity in C. elegans: paradigms, circuits, genes. J. Neurobiol. 54, 203-223. https://doi.org/10.1002/neu.10168
  51. Hoffmann, J. A. and Reichhart, J. M. 2002. Drosophila innate immunity: an evolutionary perspective. Nat. Immunol. 3, 121-126. https://doi.org/10.1038/ni0202-121
  52. Houthoofd, K., Braeckman, B. P., Lenaerts, I., Brys, K., De Vreese, A., Van Eygen, S. and Vanfleteren, J. R. 2002. Axenic growth up-regulates mass-specific metabolic rate, stress resistance, and extends life span in Caenorhabditis elegans. Exp. Gerontol. 37, 1371-1378. https://doi.org/10.1016/S0531-5565(02)00173-0
  53. Howell, G. R., Libby, R. T., Jakobs, T. C., Smith, R. S., Phalan, F. C., Barter, J. W., Barbay, J. M., Marchant, J. K., Mahesh, N., Porciatti, V., Whitmore, A. V., Masland, R. H. and John, S. W. 2007. Axons of retinal ganglion cells are insulted in the optic nerve early in DBA/2J glaucoma. J. Cell Biol. 179, 1523-1537. https://doi.org/10.1083/jcb.200706181
  54. Howell, G. R., Soto, I., Zhu, X., Ryan, M., Macalinao, D. G., Sousa, G. L., Caddle, L. B., MacNicoll, K. H., Barbay, J. M., Porciatti, V., Anderson, M. G., Smith, R. S., Clark, A. F., Libby, R. T. and John, S. W. 2012. Radiation treatment inhibits monocyte entry into the optic nerve head and prevents neuronal damage in a mouse model of glaucoma. J. Clin. Invest. 122, 1246-1261. https://doi.org/10.1172/JCI61135
  55. Huttenhower, C., Hibbs, M. A., Myers, C. L., Caudy, A. A., Hess, D. C. and Troyanskaya, O. G. 2009. The impact of incomplete knowledge on evaluation: an experimental benchmark for protein function prediction. Bioinformatics 25, 2404-2410. https://doi.org/10.1093/bioinformatics/btp397
  56. Jackson, I. L., Vujaskovic, Z. and Down, J. D. 2011. A further comparison of pathologies after thoracic irradiation among different mouse strains: finding the best preclinical model for evaluating therapies directed against radiation-induced lung damage. Radiat. Res. 175, 510-518. https://doi.org/10.1667/RR2421.1
  57. Jackson, I. L., Vujaskovic, Z. and Down, J. D. 2010. Revisiting strain-related differences in radiation sensitivity of the mouse lung: recognizing and avoiding the confounding effects of pleural effusions. Radiat. Res. 173, 10-20. https://doi.org/10.1667/RR1911.1
  58. Kanao, T. and Miyachi, Y. 2006. Exposure to low-dose X-rays promotes peculiar autophagic cell death in Drosophila melanogaster, an effect that can be regulated by the inducible expression of Hml dsRNA. Mutat. Res. 595, 60-68. https://doi.org/10.1016/j.mrfmmm.2005.10.004
  59. Kenyon, C., Chang, J., Gensch, E., Rudner, A. and Tabtiang, R. 1993. A C. elegans mutant that lives twice as long as wild type. Nature 366, 461-464. https://doi.org/10.1038/366461a0
  60. Kim, K. W., Hwang, M., Moretti, L., Jaboin, J. J., Cha, Y. I. and Lu, B. 2008. Autophagy upregulation by inhibitors of caspase-3 and mTOR enhances radiotherapy in a mouse model of lung cancer. Autophagy 4, 659-668. https://doi.org/10.4161/auto.6058
  61. Kimura, T., Takahashi, K., Suzuki, Y., Konishi, Y., Ota, Y., Mori, C., Ikenaga, T., Takanami, T., Saito, R., Ichiishi, E., Awaji, S., Watanabe, K. and Higashitani, A. 2008. The effect of high strength static magnetic fields and ionizing radiation on gene expression and DNA damage in Caenorhabditis elegans. Bioelectromagnetics 29, 605-614. https://doi.org/10.1002/bem.20425
  62. King, B. H. and Bryant, P. J. 1982. Developmental responses of the Drosophila melanogaster embryo to localized X irradiation. Radiat. Res. 89, 590-606. https://doi.org/10.2307/3575626
  63. Kislinger, T. and Gramolini, A. O. 2010. Proteome analysis of mouse model systems: A tool to model human disease and for the investigation of tissue-specific biology. J. Proteomics 73, 2205-2218. https://doi.org/10.1016/j.jprot.2010.05.004
  64. Koltovaia, N. A., Nikulushkina Iu, V., Poshchina, M. P. and Devin, A. B. 2008. [Interaction between checkpoint genes RAD9, RAD17, RAD24, and RAD53 involved in the determination of yeast Saccharomyces cerevisiae sensitivity to ionizing radiation]. Genetika 44, 761-770.
  65. Kominami, R. and Niwa, O. 2006. Radiation carcinogenesis in mouse thymic lymphomas. Cancer Sci. 97, 575-581. https://doi.org/10.1111/j.1349-7006.2006.00218.x
  66. Kuperwasser, C., Pinkas, J., Hurlbut, G. D., Naber, S. P. and Jerry, D. J. 2000. Cytoplasmic sequestration and functional repression of p53 in the mammary epithelium is reversed by hormonal treatment. Cancer Res. 60, 2723-2729.
  67. Larsen, P. L. 1993. Aging and resistance to oxidative damage in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 90, 8905-8909. https://doi.org/10.1073/pnas.90.19.8905
  68. Le Bourg, E. 2007. Hormetic effects on longevity of hydrogen peroxide in Drosophila melanogaster flies living on a poorly nutritious medium. Biogerontology 8, 327-344. https://doi.org/10.1007/s10522-006-9077-z
  69. Lee, J. H., Choi, I. Y., Kil, I. S., Kim, S. Y., Yang, E. S. and Park, J. W. 2001. Protective role of superoxide dismutases against ionizing radiation in yeast. Biochim. Biophys. Acta 1526, 191-198. https://doi.org/10.1016/S0304-4165(01)00126-X
  70. Lee, J. H., Terzaghi, W. and Deng, X. W. 2011. DWA3, an Arabidopsis DWD protein, acts as a negative regulator in ABA signal transduction. Plant Sci. 180, 352-357. https://doi.org/10.1016/j.plantsci.2010.10.008
  71. Lee, K., Park, J. S., Kim, Y. J., Lee, Y. S., Hwang, T. S., Kim, D. J., Park, E. M. and Park, Y. M. 2002. Differential expression of Prx I and II in mouse testis and their up-regulation by radiation. Biochem. Biophys. Res. Commun. 296, 337-342. https://doi.org/10.1016/S0006-291X(02)00801-X
  72. Lemaitre, B. and Hoffmann, J. 2007. The host defense of Drosophila melanogaster. Annu. Rev. Immunol. 25, 697-743. https://doi.org/10.1146/annurev.immunol.25.022106.141615
  73. Lettre, G. and Hengartner, M. O. 2006. Developmental apoptosis in C. elegans: a complex CEDnario. Nat. Rev. Mol. Cell Biol. 7, 97-108. https://doi.org/10.1038/nrm1836
  74. Lim, Y. B., Pyun, B. J., Lee, H. J., Jeon, S. R., Jin, Y. B. and Lee, Y. S. 2011. Proteomic identification of radiation response markers in mouse intestine and brain. Proteomics 11, 1254-1263. https://doi.org/10.1002/pmic.201000332
  75. Liu, C., Gao, F., Li, B., Mitchel, R. E., Liu, X., Lin, J., Zhao, L. and Cai, J. 2011. TLR4 knockout protects mice from radiation- induced thymic lymphoma by downregulation of IL6 and miR-21. Leukemia 25, 1516-1519. https://doi.org/10.1038/leu.2011.113
  76. Lloyd, T. E. and Taylor, J. P. 2010. Flightless flies: Drosophila models of neuromuscular disease. Ann. NY Acad. Sci. 1184, e1-20. https://doi.org/10.1111/j.1749-6632.2010.05432.x
  77. Makinde, A. Y., Luo-Owen, X., Rizvi, A., Crapo, J. D., Pearlstein, R. D., Slater, J. M. and Gridley, D. S. 2009. Effect of a metalloporphyrin antioxidant (MnTE-2-PyP) on the response of a mouse prostate cancer model to radiation. Anticancer Res. 29, 107-118.
  78. Molin, M., Renault, J. P., Lagniel, G., Pin, S., Toledano, M. and Labarre, J. 2007. Ionizing radiation induces a Yap1-dependent peroxide stress response in yeast. Free Radic. Biol. Med. 43, 136-144. https://doi.org/10.1016/j.freeradbiomed.2007.04.007
  79. Montero, L., Muller, N. and Gallant, P. 2008. Induction of apoptosis by Drosophila Myc. Genesis 46, 104-111. https://doi.org/10.1002/dvg.20373
  80. Moskalev, A. 2007. Radiation-induced life span alteration of Drosophila lines with genotype differences. Biogerontology 8, 499-504. https://doi.org/10.1007/s10522-007-9090-x
  81. Moskalev, A. A., Pliusnina, E. N. and Zainullin, V. G. 2007. The influence of low doze gamma-irradiation on life span of Drosophila mutants with defects of DNA damage sensation and repair. Radiats. Biol. Radioecol. 47, 571-573.
  82. Muller, H. J. 1927. Artificial transmutation of the gene. Science 66, 84-87. https://doi.org/10.1126/science.66.1699.84
  83. Nelson, G. A., Jones, T. A., Chesnut, A. and Smith, A. L. 2002. Radiation-induced gene expression in the nematode Caenorhabditis elegans. J. Radiat. Res. 43 Suppl, S199-203. https://doi.org/10.1269/jrr.43.S199
  84. Nelson, G. A., Schubert, W. W., Kazarians, G. A., Richards, G. F., Benton, E. V., Benton, E. R. and Henke, R. 1994. Radiation effects in nematodes: results from IML-1 experiments. Adv. Space Res. 14, 87-91.
  85. Newcomb, E. W., Lukyanov, Y., Kawashima, N., Alonso-Basanta, M., Wang, S. C., Liu, M., Jure-Kunkel, M., Zagzag, D., Demaria, S. and Formenti, S. C. 2010. Radiotherapy enhances antitumor effect of anti-CD137 therapy in a mouse Glioma model. Radiat. Res. 173, 426-432. https://doi.org/10.1667/RR1904.1
  86. Ollmann, M., Young, L. M., Di Como, C. J., Karim, F., Belvin, M., Robertson, S., Whittaker, K., Demsky, M., Fisher, W. W., Buchman, A., Duyk, G., Friedman, L., Prives, C. and Kopczynski, C. 2000. Drosophila p53 is a structural and functional homolog of the tumor suppressor p53. Cell 101, 91-101. https://doi.org/10.1016/S0092-8674(00)80626-1
  87. Orme, M. and Meier, P. 2009. Inhibitor of apoptosis proteins in Drosophila: gatekeepers of death. Apoptosis 14, 950-960. https://doi.org/10.1007/s10495-009-0358-2
  88. Palermo, A. M., Rey, M. and Munoz, E. R. 1994. Protective effect of ethanol on X-ray-induced mitotic recombination in Drosophila melanogaster. Environ. Mol. Mutagen. 24, 137-142. https://doi.org/10.1002/em.2850240209
  89. Parashar, V., Frankel, S., Lurie, A. G. and Rogina, B. 2008. The effects of age on radiation resistance and oxidative stress in adult Drosophila melanogaster. Radiat. Res. 169, 707-711. https://doi.org/10.1667/RR1225.1
  90. Peters, L. L., Robledo, R. F., Bult, C. J., Churchill, G. A., Paigen, B. J. and Svenson, K. L. 2007. The mouse as a model for human biology: a resource guide for complex trait analysis. Nat. Rev. Genet. 8, 58-69. https://doi.org/10.1038/nrg2025
  91. Reiter, L. T., Potocki, L., Chien, S., Gribskov, M. and Bier, E. 2001. A systematic analysis of human disease-associated gene sequences in Drosophila melanogaster. Genome Res. 11, 1114-1125. https://doi.org/10.1101/gr.169101
  92. Reliene, R., Pollard, J. M., Sobol, Z., Trouiller, B., Gatti, R. A. and Schiestl, R. H. 2009. N-acetyl cysteine protects against ionizing radiation-induced DNA damage but not against cell killing in yeast and mammals. Mutat. Res. 665, 37-43. https://doi.org/10.1016/j.mrfmmm.2009.02.016
  93. Rithidech, K. N., Honikel, L., Rieger, R., Xie, W., Fischer, T. and Simon, S. R. 2009. Protein-expression profiles in mouse blood-plasma following acute whole-body exposure to (137)Cs gamma rays. Int. J. Radiat. Biol. 85, 432-447. https://doi.org/10.1080/09553000902820390
  94. Roman, G., Endo, K., Zong, L. and Davis, R. L. 2001. P[Switch], a system for spatial and temporal control of gene expression in Drosophila melanogaster. Proc. Natl. Acad. Sci.USA 98, 12602-12607. https://doi.org/10.1073/pnas.221303998
  95. Rowley, R. and Zhang, J. 1996. Effect of B-type cyclin over-expression on radiation-induced mitotic delay in the fission yeast. Int. J. Radiat. Biol. 69, 565-573. https://doi.org/10.1080/095530096145571
  96. Rubin, G. M. and Lewis, E. B. 2000. A brief history of Drosophila's contributions to genome research. Science 287, 2216-2218. https://doi.org/10.1126/science.287.5461.2216
  97. Ryu, J. H., Ha, E. M., Oh, C. T., Seol, J. H., Brey, P. T., Jin, I., Lee, D. G., Kim, J., Lee, D. and Lee, W. J. 2006. An essential complementary role of NF-kappaB pathway to microbicidal oxidants in Drosophila gut immunity. EMBO J. 25, 3693-3701. https://doi.org/10.1038/sj.emboj.7601233
  98. Saeki, S., Yamamoto, M. and Iino, Y. 2001. Plasticity of chemotaxis revealed by paired presentation of a chemoattractant and starvation in the nematode Caenorhabditis elegans. J. Exp. Biol. 204, 1757-1764.
  99. Sakashita, T., Hamada, N., Ikeda, D. D., Suzuki, M., Yanase, S., Ishii, N. and Kobayashi, Y. 2008. Locomotionlearning behavior relationship in Caenorhabditis elegans following gamma-ray irradiation. J. Radiat. Res. 49, 285-291. https://doi.org/10.1269/jrr.07102
  100. Sakashita, T., Hamada, N., Ikeda, D. D., Yanase, S., Suzuki, M., Ishii, N. and Kobayashi, Y. 2008. Modulatory effect of ionizing radiation on food-NaCl associative learning: the role of gamma subunit of G protein in Caenorhabditis elegans. FASEB J. 22, 713-720.
  101. Sakashita, T., Takanami, T., Yanase, S., Hamada, N., Suzuki, M., Kimura, T., Kobayashi, Y., Ishii, N. and Higashitani, A. 2010. Radiation biology of Caenorhabditis elegans: germ cell response, aging and behavior. J. Radiat. Res. 51, 107-121. https://doi.org/10.1269/jrr.09100
  102. Sawin, E. R., Ranganathan, R. and Horvitz, H. R. 2000. C. elegans locomotory rate is modulated by the environment through a dopaminergic pathway and by experience through a serotonergic pathway. Neuron 26, 619-631. https://doi.org/10.1016/S0896-6273(00)81199-X
  103. Schumacher, B., Hofmann, K., Boulton, S. and Gartner, A. 2001. The C. elegans homolog of the p53 tumor suppressor is required for DNA damage-induced apoptosis. Curr. Biol. 11, 1722-1727. https://doi.org/10.1016/S0960-9822(01)00534-6
  104. Schumacher, B., Schertel, C., Wittenburg, N., Tuck, S., Mitani, S., Gartner, A., Conradt, B. and Shaham, S. 2005. C. elegans ced-13 can promote apoptosis and is induced in response to DNA damage. Cell Death Differ. 12, 153-161. https://doi.org/10.1038/sj.cdd.4401539
  105. Seong, K. M., Kim, C. S., Lee, B. S., Nam, S. Y., Yang, K. H., Kim, J. Y., Park, J. J., Min, K. J. and Jin, Y. W. 2012. Low-dose Radiation Induces Drosophila Innate Immunity through Toll Pathway Activation. J. Radiat. Res. 53, 242-249. https://doi.org/10.1269/jrr.11170
  106. Seong, K. M., Kim, C. S., Seo, S. W., Jeon, H. Y., Lee, B. S., Nam, S. Y., Yang, K. H., Kim, J. Y., Min, K. J. and Jin, Y. W. 2011. Genome-wide analysis of low-dose irradiated male Drosophila melanogaster with extended longevity. Biogerontology 12, 93-107. https://doi.org/10.1007/s10522-010-9295-2
  107. Shaposhnikov, M. V. and Moskalev, A. A. 2010. FOXO tanscription factor role in radiation adaptive response and hormisis in Drosophila melanogaster. Radiats. Biol. Radioecol. 50, 312-317.
  108. Shaposhnikov, M. V., Turysheva, E. V. and Moskalev, A. A. 2009. Low-dose rate irradiation induced hormesis, hypersensitivity and adaptive response in Drosophila melanogaster of radiosensitive strains. Radiats. Biol. Radioecol. 49, 46-54.
  109. Siemann, D. W., Hill, R. P. and Penney, D. P. 1982. Early and late pulmonary toxicity in mice evaluated 180 and 420 days following localized lung irradiation. Radiat. Res. 89, 396-407. https://doi.org/10.2307/3575784
  110. Simon, J. A. and Bedalov, A. 2004. Yeast as a model system for anticancer drug discovery. Nat. Rev. Cancer 4, 481-492. https://doi.org/10.1038/nrc1372
  111. Song, Y. H. 2005. Drosophila melanogaster: a model for the study of DNA damage checkpoint response. Mol. Cells 19, 167-179.
  112. Sulston, J. E. and Horvitz, H. R. 1977. Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev. Biol. 56, 110-156. https://doi.org/10.1016/0012-1606(77)90158-0
  113. Suzuki, M., Sakashita, T., Yanase, S., Kikuchi, M., Ohba, H., Higashitani, A., Hamada, N., Funayama, T., Fukamoto, K., Tsuji, T. and Kobayashi, Y. 2009. Effects of ionizing radiation on locomotory behavior and mechanosensation in Caenorhabditis elegans. J. Radiat. Res. 50, 119-125. https://doi.org/10.1269/jrr.08087
  114. Tawe, W. N., Eschbach, M. L., Walter, R. D. and Henkle-Duhrsen, K. 1998. Identification of stress-responsive genes in Caenorhabditis elegans using RT-PCR differential display. Nucleic Acids Res. 26, 1621-1627. https://doi.org/10.1093/nar/26.7.1621
  115. The C. elegans Sequencing Consortium. 1998. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282, 2012-2018. https://doi.org/10.1126/science.282.5396.2012
  116. Thompson, T. C., Timme, T. L., Park, S. H., Yang, G. and Ren, C. 2000. Mouse prostate reconstitution model system: A series of in vivo and in vitro models for benign and malignant prostatic disease. Prostate 43, 248-254. https://doi.org/10.1002/1097-0045(20000601)43:4<248::AID-PROS3>3.0.CO;2-P
  117. Travis, E. L., Down, J. D., Holmes, S. J. and Hobson, B. 1980. Radiation pneumonitis and fibrosis in mouse lung assayed by respiratory frequency and histology. Radiat. Res. 84, 133-143. https://doi.org/10.2307/3575224
  118. Vaiserman, A. M. 2010. Radiation hormesis: historical perspective and implications for low-dose cancer risk assessment. Dose Response 8, 172-191. https://doi.org/10.2203/dose-response.09-037.Vaiserman
  119. Vaiserman, A. M., Koshel, N. M. and Voitenko, V. P. 2004. Effect of X-irradiation at larval stage on adult lifespan in Drosophila melanogaster. Biogerontology 5, 49-54. https://doi.org/10.1023/B:BGEN.0000017686.69678.0c
  120. van Haaften, G., Romeijn, R., Pothof, J., Koole, W., Mullenders, L. H., Pastink, A., Plasterk, R. H. and Tijsterman, M. 2006. Identification of conserved pathways of DNA-damage response and radiation protection by genome- wide RNAi. Curr. Biol. 16, 1344-1350. https://doi.org/10.1016/j.cub.2006.05.047
  121. Vanfleteren, J. R. and Braeckman, B. P. 1999. Mechanisms of life span determination in Caenorhabditis elegans. Neurobiol. Aging 20, 487-502. https://doi.org/10.1016/S0197-4580(99)00087-1
  122. Waterston, R. H., Lindblad-Toh, K., Birney, E., Rogers, J., Abril, J. F., Agarwal, P., Agarwala, R., Ainscough, R., Alexandersson, M., An, P., Antonarakis, S. E., Attwood, J., Baertsch, R., Bailey, J., Barlow, K., Beck, S., Berry, E., Birren, B., Bloom, T., Bork, P., Botcherby, M., Bray, N., Brent, M. R., Brown, D. G., Brown, S. D., Bult, C., Burton, J., Butler,J., Campbell, R. D., Carninci, P., Cawley, S., Chiaromonte, F., Chinwalla, A. T., Church, D. M., Clamp, M., Clee, C., Collins, F. S., Cook, L. L., Copley, R. R., Coulson, A., Couronne, O., Cuff, J., Curwen, V., Cutts, T., Daly, M., David, R., Davies, J., Delehaunty, K. D., Deri, J., Dermitzakis, E. T., Dewey, C., Dickens, N. J., Diekhans, M., Dodge, S., Dubchak, I., Dunn, D. M., Eddy, S. R., Elnitski, L., Emes, R. D., Eswara, P., Eyras, E., Felsenfeld, A., Fewell, G. A., Flicek, P., Foley, K., Frankel, W. N., Fulton, L. A., Fulton, R. S., Furey, T. S., Gage, D., Gibbs, R. A., Glusman, G., Gnerre, S., Goldman, N., Goodstadt, L., Grafham, D., Graves, T. A., Green, E. D., Gregory, S., Guigo, R., Guyer, M., Hardison, R. C., Haussler, D., Hayashizaki, Y., Hillier, L. W., Hinrichs, A., Hlavina, W., Holzer, T., Hsu, F., Hua, A., Hubbard, T., Hunt, A., Jackson, I., Jaffe, D. B., Johnson, L. S., Jones, M., Jones, T. A., Joy, A., Kamal, M., Karlsson, E. K., Karolchik, D., Kasprzyk, A., Kawai, J., Keibler, E., Kells, C., Kent, W. J., Kirby, A., Kolbe, D. L., Korf, I., Kucherlapati, R. S., Kulbokas, E. J., Kulp, D., Landers, T., Leger, J. P., Leonard, S., Letunic, I., Levine, R., Li, J., Li, M., Lloyd, C., Lucas, S., Ma, B., Maglott, D. R., Mardis, E. R., Matthews, L., Mauceli, E., Mayer, J. H., McCarthy, M., McCombie, W. R., McLaren, S., McLay, K., McPherson, J. D., Meldrim, J., Meredith, B., Mesirov, J. P., Miller, W., Miner, T. L., Mongin, E., Montgomery, K. T., Morgan, M., Mott, R., Mullikin, J. C., Muzny, D. M., Nash, W. E., Nelson, J. O., Nhan, M. N., Nicol, R., Ning, Z., Nusbaum, C., O'Connor, M. J., Okazaki, Y., Oliver, K., Overton-Larty, E., Pachter, L., Parra, G., Pepin, K. H., Peterson, J., Pevzner, P., Plumb, R., Pohl, C. S., Poliakov, A., Ponce, T. C., Ponting, C. P., Potter, S., Quail, M., Reymond, A., Roe, B. A., Roskin, K. M., Rubin, E. M., Rust, A. G., Santos, R., Sapojnikov, V., Schultz, B., Schultz, J., Schwartz, M. S., Schwartz, S., Scott, C., Seaman, S., Searle, S., Sharpe, T., Sheridan, A., Shownkeen, R., Sims, S., Singer, J. B., Slater, G., Smit, A., Smith, D. R., Spencer, B., Stabenau, A., Stange-Thomann, N., Sugnet, C., Suyama, M., Tesler, G., Thompson, J., Torrents, D., Trevaskis, E., Tromp, J., Ucla, C., Ureta-Vidal, A., Vinson, J. P., Von Niederhausern, A. C., Wade, C. M., Wall, M., Weber, R. J., Weiss, R. B., Wendl, M. C., West, A. P., Wetterstrand, K., Wheeler, R., Whelan, S., Wierzbowski, J., Willey, D., Williams, S., Wilson, R. K., Winter, E., Worley, K. C., Wyman, D., Yang, S., Yang, S. P., Zdobnov, E. M., Zody, M. C. and Lander, E. S. 2002. Initial sequencing and comparative analysis of the mouse genome. Nature 420, 520-562. https://doi.org/10.1038/nature01262
  123. Watson, A., Mata, J., Bahler, J., Carr, A. and Humphrey, T. 2004. Global gene expression responses of fission yeast to ionizing radiation. Mol. Biol. Cell 15, 851-860.
  124. White, J. G., Southgate, E., Thomson, J. N. and Brenner, S. 1986. The Structure of the Nervous System of the Nematode Caenorhabditis elegans. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 314, 1-340. https://doi.org/10.1098/rstb.1986.0056
  125. Xue, D. and Horvitz, H. R. 1997. Caenorhabditis elegans CED-9 protein is a bifunctional cell-death inhibitor. Nature 390, 305-308. https://doi.org/10.1038/36889
  126. Yanase, S., Hartman, P. S., Ito, A. and Ishii, N. 1999. Oxidative stress pretreatment increases the X-radiation resistance of the nematode Caenorhabditis elegans. Mutat. Res. 426, 31-39. https://doi.org/10.1016/S0027-5107(99)00079-2
  127. Yanase, S. and Ishii, N. 2008. Hyperoxia exposure induced hormesis decreases mitochondrial superoxide radical levels via Ins/IGF-1 signaling pathway in a long-lived age-1 mutant of Caenorhabditis elegans. J. Radiat. Res. 49, 211-218. https://doi.org/10.1269/jrr.07043
  128. Ye, K., Ji, C. B., Lu, X. W., Ni, Y. H., Gao, C. L., Chen,X. H., Zhao, Y. P., Gu, G. X. and Guo, X. R. 2010. Resveratrol attenuates radiation damage in Caenorhabditis elegans by preventing oxidative stress. J. Radiat. Res. 51, 473-479. https://doi.org/10.1269/jrr.10009
  129. Yokoyama, K., Fukumoto, K., Murakami, T., Harada, S., Hosono, R., Wadhwa, R., Mitsui, Y. and Ohkuma, S. 2002. Extended longevity of Caenorhabditis elegans by knocking in extra copies of hsp70F, a homolog of mot-2 (mortalin)/mthsp70/Grp75. FEBS Lett. 516, 53-57. https://doi.org/10.1016/S0014-5793(02)02470-5