DOI QR코드

DOI QR Code

Increased Abiotic Stress Tolerance by Over-expressing OsABF2 in Transgenic Arabidopsis thaliana

OsABF2를 과발현시킨 애기장대에서 비생물학적 스트레스에 대한 내성 증가

  • Park, Phun Bum (Department of Bioscience and Biotechnology, University of Suwon)
  • 박훤범 (수원대학교 생명공학과)
  • Received : 2012.09.18
  • Accepted : 2012.11.09
  • Published : 2012.11.30

Abstract

The phytohormone abscisic acid (ABA) plays an important role in the adaptive response of plants to abiotic stresses. ABA also regulates many important processes, including seed dormancy, germination, inhibition of cell division, and stomatal closure. OsABF2 (Oryza sativa ABRE binding factor2) is one of the bZIP type transcription factors, which are involved in abiotic stress response and ABA signaling in rice. Expression of OsABF2 is induced by ABA and various stress treatments. Findings show that survival rates of OsABF2 over-expressing Arabidopsis lines were increased under drought, salt, and heat stress conditions. The germination ratio of OsABF2 over-expressing Arabidopsis lines was decreased in the presence of ABA. Results indicate that OsABF2 over-expressing Arabidopsis lines have enhanced abiotic stress tolerance and have increased ABA sensitivity.

식물호르몬인 abscisic acid (ABA)는 식물의 비생물학적 스트레스의 적응과정에서 중요한 역할을 수행하고 있다. 또한 ABA는 종자휴면, 발아, 세포분열의 저해, 기공개폐와 같은 중요한 과정에 관여하고 있다. OsABF2(Oryza sativa ABRE Binding Factor2)는 벼에서 비생물학적 스트레스와 ABA 신호전달 과정에 양성적으로 관여하는 bZIP 형태의 전사인자이다. OsABF2 유전자의 발현은 ABA와 다양한 스트레스 처리에 의해 유도된다. 본 논문에서는 OsABF2 유전자를 과발현한 애기장대가 가뭄, 고염, 고온 상태에서의 생존율이 야생형보다 증가하는 것을 확인하였다. 또한 ABA가 존재하는 상황에서 OsABF2 유전자를 과발현한 애기장대의 발아율이 감소하는 것을 확인하였다. 이러한 결과로 미루어 OsABF2 유전자를 과발현한 애기장대는 비생물학적 스트레스에 대한 내성이 증가하고 ABA 감수성은 증가하는 것으로 확인되었다.

Keywords

References

  1. Abe, H., Yamaguchi-Shinozaki, K., Urao, T., Iwasaki, T., Hosokawa, D. and Shinozaki, K. 1997. Role of Arabidopsis MYC and MYB homologs in drought and abscisic acid regulated gene expression. Plant Cell 9, 1859-1868.
  2. Adams, P., Thomas, J. C., Vernon, D. M., Bohnert, H. J. and Jensen, R. G. 1992.Distinct cellular and organismic responses to salt stress. Plant Cell Physiol. 33, 1215-1223.
  3. Apel, K. and Hirt, H. 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55, 373-399. https://doi.org/10.1146/annurev.arplant.55.031903.141701
  4. Busk, P. K. and Pages, M. 1998. Regulation of abscisic acid-induced transcription. Plant Mol. Biol. 37, 425-435. https://doi.org/10.1023/A:1006058700720
  5. Cao, X., Costa, L. M., Biderre-Petit, C., Kbhaya, B., Dey, N., Perez, P., McCarty, D. R., Gutierrez-Marcos, J. F. and Becraft, P. W. 2007.Abscisic acid and stress signals induce Viviparous1 expression in seed and vegetative tissues of maize. Plant Physiol. 143, 720-731.
  6. Chen, W., Provart, N. J., Glazebrook, J., Katagiri, F., Chang, H. S., Eulgern, T., Mauch, F., Luan, S., Zou, G., Whitham, S. A., Budworth, P. R., Tao, Y., Xie, Z., Chen, X., Lam, S., Kreps,J. A., Harper, J. F., Heinlein, M., Kobayashi, K., Hohn, T., Dang, J. L., Wang, X. and Zhu, T. 2002. Expression profile matrix of Arabidopsistranscription factor genes suggests their putative functions in response to environmental stresses. Plant Cell 14, 559-574. https://doi.org/10.1105/tpc.010410
  7. Chen, W. and Zhu, T. 2004. Networks of transcription factors with roles in environmental stress response. Trends Plant Sci. 9, 591-596. https://doi.org/10.1016/j.tplants.2004.10.007
  8. Choi, H., Hong, J., Ha, J., Kang, J. and Kim, S. Y. 2000. ABFs, a family of ABA-responsive element binding factors. J. Biol. Chem. 275, 1723-1730. https://doi.org/10.1074/jbc.275.3.1723
  9. Clough, S. J. and Bent, A. F. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16 735-743. https://doi.org/10.1046/j.1365-313x.1998.00343.x
  10. Dickinson, C. D., Evans, R. P. and Nielsen, N. C. 1988. RY repeats are conserved in the 5'-flanking regions of legume seed-protein genes. Nucleic Acids Res. 16, 371. https://doi.org/10.1093/nar/16.1.371
  11. Fujita, Y., Fujita, M., Satoh, R., Maruyama,K., Parvez, M. M., Seki, M., Hiratsu, K.,Ohme-Takagi, M., Shinozaki, K. and Yamaguchi-Shinozaki, K. 2005. AREB1 is a transcription activator of novel ABRE-dependent ABAsignaling that enhances drought stress tolerance in Arabidopsis. Plant Cell 17, 3470-3488. https://doi.org/10.1105/tpc.105.035659
  12. Gilmour, S. J. and Thomashow, M. F. 1991. Cold acclimation and cold-regulated gene expression in ABA mutants of Arabidopsis thaliana. Plant Mol. Biol. 17, 1233-1240. https://doi.org/10.1007/BF00028738
  13. Giraud, E., Ho, L. H. M., Clifton, R., Carroll,A., Estavillo, G., Tan, Y. F., Howell, K. A.,Ivanova, A., Pogson, B. J., Millar, A. H. and Whelan, J. 2008. The absence of alternative oxidase1a in Arabidopsis results in acute sensitivity to combined light and drought stress. Plant Physiol. 147, 595-610. https://doi.org/10.1104/pp.107.115121
  14. Giuliano, G., Pichersky, E., Malik, V. S., Timko, M. P., Scolnik, P. A. and Cashmore, A. R. 1988. An evolutionarily conserved protein binding sequence upstream of a plant light-regulated gene. Proc. Natl. Acad. Sci. USA 85, 7089-7093. https://doi.org/10.1073/pnas.85.19.7089
  15. Guiltinan, M. J., Marcotte, W. R. and Quatrano, R. S. 1990. A plant leucine zipper protein that recognizes an abscisic acid response element. Science 250, 267-271. https://doi.org/10.1126/science.2145628
  16. Hossain, M. A., Lee, Y., Cho, J. I., Ahn, C. H., Lee, S. K., Jeon, J. S., Kang, H., Lee, C. H., An, G. and Park, P. B. 2010a. The bZIP transcription factor OsABF1 is an ABA responsive element binding factor that enhances abiotic stress signaling in rice. Plant Mol. Biol. 72, 557-566. https://doi.org/10.1007/s11103-009-9592-9
  17. Hossain, M. A., Cho, J. I., Han, M., Ahn, C. H., Jeon, J. S., An, G. and Park, P. B. 2010b. The ABRE-binding bZIP transcription factor OsABF2 is a positive regulator of abiotic stress and ABA signaling in rice. J. Plant Physiol. 167, 1512-1520. https://doi.org/10.1016/j.jplph.2010.05.008
  18. Huang, X. S., Liu, J. H. and Chen, X. J. 2010. Overexpression of PtrABF gene, a bZIP transcription factor isolated from Poncirus trifoliata, enhances dehydration and drought tolerance in tobacco via scavenging ROS and modulating expression of stress-responsive genes. BMC Plant Biol. 10, 230. https://doi.org/10.1186/1471-2229-10-230
  19. Jakoby, M., Weisshaar, B., Droge-Laser, W., Vicente-Carbajosa, J., Tiedermann, J., Kroj, T. and Parcy, F. 2002. bZIP transcription factors in Arabidopsis. Trends Plant Sci. 7, 106-111. https://doi.org/10.1016/S1360-1385(01)02223-3
  20. Karakas, B., Ozias-Akins, P., Stushnoff, C., Suefferheld, M. and Rieger, M. 1997. Salinity and drought tolerance of mannitol- accumulating transgenic tobacco. Plant Cell Environ. 20, 609-616. https://doi.org/10.1111/j.1365-3040.1997.00132.x
  21. Kim, J. B., Kang, J. Y. and Kim, S. Y. 2004. Over-expression of a transcription factor regulating ABA responsive gene expression confers multiple stress tolerance. Plant Biotech. J. 2, 459-466. https://doi.org/10.1111/j.1467-7652.2004.00090.x
  22. Kim, S. Y., Chung, H. J. and Thomas, T. L. 1997. Isolation of a novel class of bZIP transcription factorthat interact with ABA-responsive and embryo-specification elements in the Dc3 promoter using a modified yeast one-hybrid system. Plant J. 11, 1237-1251. https://doi.org/10.1046/j.1365-313X.1997.11061237.x
  23. Kim, S. Y. 2007. Recent advances in ABA signaling. J. Plant Biol. 50, 117-121. https://doi.org/10.1007/BF03030619
  24. Leung, J. and Giraudat, J. 1998. Abscisic acid signal transduction. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49, 199-222. https://doi.org/10.1146/annurev.arplant.49.1.199
  25. Lu, G., Gao, C., Zhong, X. and Han, B. 2008. Identification of OsbZIP72 as a positive regulator of ABA response and drought tolerance in rice. Planta 229, 605-615.
  26. Mantyla, E., Lang, V. and Palva, E. T. 1995. Role of abscisic acid in drought-induced freezing tolerance, cold acclimation, and accumulation of LTI78 and RAB18 proteins in Arabidopsis thaliana. Plant Physiol. 107, 141-148.
  27. McCarty, D. R., Carson, C. B., Stinard, P. S. and Robertson, D. S. 1989. Molecular analysis of viviparous-1: an abscisic acid-insensitive mutant of maize. Plant Cell 1, 523-532. https://doi.org/10.1105/tpc.1.5.523
  28. Ming, C., Zhaoshi, X., Lanqin, X., Liancheng, L., Xianguo, C., Jianhui, D., Qiaoyan, W. and Youzhi, M. 2009. Cold-induced modulation and functional analyses of the DRE-binding transcription factor gene, GmDREB3, in soybean (Glycine maxL.). J. Exp. Bot. 60, 121-135.
  29. Mittler, R. 2006. Abiotic stress, the field environment and stress combination. Trends Plant Sci. 11, 15-19. https://doi.org/10.1016/j.tplants.2005.11.002
  30. Moller, I. M., Jensen, P. E. and Hansson, A. 2007. Oxidative modifications to cellular components in plants. Annu. Rev. Plant Biol. 58, 459-481. https://doi.org/10.1146/annurev.arplant.58.032806.103946
  31. Navrot, N., Rouhier, N., Gelhaye, E. and Jacquot, J. P. 2007. Reactive oxygen species generation and antioxidant systems in plant mitochondria. Physiol. Plant 129, 185-195. https://doi.org/10.1111/j.1399-3054.2006.00777.x
  32. Neill, S. J., Horgan, R. and Rees, A. F. 1987. Seed development and vivirary in Zea mays L. Planta 171, 358-364. https://doi.org/10.1007/BF00398681
  33. Nijhawan, A., Jain, M., Tyagi, A. K. and Khurana, J. P. 2008. Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice. Plant Physiol. 146, 333-350.
  34. Niu, X., Renshaw-Gegg, L., Miller, L. and Guiltinan, M. J. 1999. Bipartite determinants of DNA binding specificity of plant basic leucine zipper proteins. Plant Mol. Biol. 41, 1-13. https://doi.org/10.1023/A:1006206011502
  35. Rabbani, M. A., Maruyama, K., Abe, H., Khan, M. A., Katsura, K., Ito, Y., Yshiwara, K., Seki, M., Shnozaki, K. and Yamaguchi-Shinozaki, K. 2003. Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol. 133, 1755-1767. https://doi.org/10.1104/pp.103.025742
  36. Robichaud, C. S., Wong, J. and Sussex, I. M. 1980. Control of in vitro growth of viviparous embryo mutants of maize by abscisic acid. Dev. Genet. 1, 325-330.
  37. Seki, M., Narusaka, M., Ishida, J., Nanjo, T., Fujita, M., Oono, Y., Kamiya, A.,Nakajima, M., Enju, A., Sakurai, T., Satou, M., Akiyama, K., Taji, K., Yamaguchi-Shinozaki, K.,Carninci, P., Kawai, J., Hayashizaki, Y. and Shinozaki, K. 2002. Monitoring the expression profiles of 7000 Arabidopsisgenes under drought, cold and high-salinity stresses using a full length cDNA microarray. Plant J. 31 279-292. https://doi.org/10.1046/j.1365-313X.2002.01359.x
  38. Shen, Q. and Ho, T. H. D. 1995. Functional dissection of an abscisic acid (ABA) inducible gene reveals two independent ABA responsive complexes each containing a G-box and a novel cis-acting element. Plant Cell 7, 295-307. https://doi.org/10.1105/tpc.7.3.295
  39. Shen, Q., Zhang, P. and Ho, T. H. D. 1996. Modular nature of abscisic acid (ABA) response complexes: Composite promoter units that are necessary and sufficient for ABA induction of gene expression in barley. Plant Cell 8, 1107-1119. https://doi.org/10.1105/tpc.8.7.1107
  40. Singh, K. B. 1998. Transcriptional regulation in plants: the importance of combinatorial control. Plant Physiol. 118, 1111-1120. https://doi.org/10.1104/pp.118.4.1111
  41. Todaka, D., Nakashima, K., Shinozaki, K. and Yamakuchi- Shinozaki, K. 2012. Toward understanding transcriptional regulatory networks in abiotic stress responses and tolerance in rice. Rice 5, 6-9. https://doi.org/10.1186/1939-8433-5-6
  42. Tran, L. S., Nakashima, K., Sakuma, Y., Osakabe, Y., Qin, F., Simpson, S. D., Maruyama, K., Fujita, Y., Shinozaki, K. and Yamaguchi-Shinozaki, K. 2006. Co-expression of the stress-inducible zinc finger homeodomain ZFHD1 and NAC transcription factors enhances expression of the ERD1 gene in Arabidopsis. Plant J. 49, 46-63. https://doi.org/10.1111/j.1365-313X.2006.02932.x
  43. Uno, Y., Furihata, T., Abe, H., Yoshida, R., Shinozaki, K. and Yamaguchi-Shinozaki, K. 2000. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc. Natl. Acad. Sci. USA 97, 11632- 11637. https://doi.org/10.1073/pnas.190309197
  44. Wise, A. A., Liu, Z. Y. and Binns, A. N. 2006. Three methods for the introduction of foreign DNA into Agrobacterium. Methods Mol. Biol. 343, 43-53.
  45. Xiang, Y., Tang, N., Du, H., Ye, H. and Xiong, L. 2008. Characterization of OsbZIP23 as a key player of basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. Plant Physiol. 148, 1938-1952. https://doi.org/10.1104/pp.108.128199
  46. Yamaguchi-Shinozaki, K. and Shinozaki, K. 2005. Organization of cis-acting regulatory elements in osmotic and coldstress- responsive promoters. Trends Plant Sci. 10, 88-94.
  47. Yancey, P. H., Clark, M. E., Hand, S. C.,Bowlus, R. D. and Somero, G. N. 1982. Living with water stress: evolution of osmolyte systems. Science 217, 1214-1222. https://doi.org/10.1126/science.7112124
  48. Yoshida, T., Fujita, Y., Sayama, H., Kidokoro, S., Maruyama, K., Mizoi, J., Shinozaki, K. andYamaguchi-Shinozaki, K. 2010. AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. Plant J. 61, 672-685. https://doi.org/10.1111/j.1365-313X.2009.04092.x
  49. Zeevaart, J. A. and Creelman, R. A. 1988.Metabolism and physiology of abscisic acid. Annu. Rev. Plant Physiol. Plant Mol. Biol. 39, 439-473. https://doi.org/10.1146/annurev.pp.39.060188.002255