DOI QR코드

DOI QR Code

수치모의를 통한 원자력 발전소 심층 취·배수 구조물 유·출입구 주변에서의 수리학적 흐름특성 고찰

Investigation of Hydraulic Flow Properties around the Mouths of Deep Intake and Discharge Structures at Nuclear Power Plant by Numerical Model

  • 이상화 (동아대학교 공과대학 토목공학과) ;
  • 이성면 (한국전력기술 원자력본부 토목건축기술그룹) ;
  • 박병준 (한국농어촌공사 농어촌연구원 수리시험연구팀) ;
  • 이한승 (동아대학교 공과대학 토목공학과 하천항만실험실)
  • 투고 : 2012.01.04
  • 심사 : 2012.03.05
  • 발행 : 2012.04.30

초록

증기를 발생시켜 터빈(turbine)을 회전시키는 화력 및 원자력 발전 계통에서 냉각시설은 필수적인 구조물이며, 냉각수 순환 계통은 일반적으로 해수를 취수하여 발전소 내의 복수기까지 유입시켜 증기와 열 교환 후 다시 외해로 배출시키는 형태를 취하고 있다. 최근 냉각수 취 배수 방식을 표층 취 배수 방식이 아닌 심층 취 배수 방식으로 변경하고 있는데, 기존 원전의 재순환 온도에 대한 영향을 최소화 하고, 온배수 방류시 밀도차로 인한 부력으로 온배수 혼합효과를 높여 온배수에 의한 환경피해 범위를 최소화하기 위해서이다. 특히, 하절기에 저층의 저온 냉각수를 취수할 수 있다는 이점 때문에 향후 계획되는 발전소들도 심층 취 배수 방식을 도입할 것으로 예상된다. 본 연구에서는 원자력 발전소의 냉각시설 중 심층 취 배수 구조물의 입구 주변을 3차원 전산유체역학 코드인 $FLOW-3D^{(R)}$로 모사하여 그 흐름특성을 분석하였다. 취수구(intake)의 경우 연직취수 조건에서 유속 덮개(Velocity cap), 배수구(diffuser)의 경우 방류수의 분사방향에 변화를 주어 모의하였으며, 그 결과 취수구의 경우 유속덮개에 의한 연직 유속성분의 현저한 감소로 인한 어류 유입영향을 최소화할 수 있을 것으로 판단되며, 배수구 희석효과는 Jirka 및 Harleman이 제시한 2차원 온배수 프룸(frume)과 잘 일치 하는 것으로 나타났다.

A cooling system is indispensable for the fossil and nuclear power plants which produce electricity by rotating the turbines with hot steam. A cycle of the typical cooling system includes pumping of seawater at the intake pump house, exchange of heat at the condenser, and discharge of hot water to the sea. The cooling type of the nuclear power plants in Korea recently evolves from the conventional surface intake/discharge systems to the submerged intake/discharge systems that minimize effectively an intake temperature rise of the existing plants and that are beneficial to the marine environment by reducing the high temperature region with an intensive dilution due to a high velocity jet and density differential at the mixing zone. It is highly anticipated that the future nuclear power plants in Korea will accommodate the submerged cooling system in credit of supplying the lower temperature water in the summer season. This study investigates the approach flow patterns at the velocity caps and discharge flow patterns from diffusers using the 3-D computational fluid dynamics code of $FLOW-3D^{(R)}$. The approach flow test has been conducted at the velocity caps with and without a cap. The discharge flow from the diffuser was simulated for the single-port diffuser and multi-ports diffuser. The flow characteristics to the velocity cap with a cap demonstrate that fish entrainment can significantly be minimized on account of the low vertical flow component around the cap. The flow pattern around the diffuser is well agreed with the schematic diagram by Jirka and Harleman.

키워드

참고문헌

  1. 김대근, 서일원(2003) 수표면 및 수중방류 방식으로 주변수 흐름이 있는 수역에 방류된 온수의 혼합거동 수치모의, 대한토목학회논문집, 대한토목학회, 제23권 제6호, pp. 489-497.
  2. 김효일, 고광훈, 이기혁(2001) 온배수 영향 저감을 위한 심층배수 구조물의 적용성 검토, 한국전력기술, 제12권 제1집 통권 제38호 pp. 6-14.
  3. 김효일, 고광훈, 이기혁(2001) 심층배수 구조물의 구조형식별 특성 및 설계기준, 한국전력기술, 제12권 제1집 통권 제38호 pp. 15-25.
  4. 류시완, 서일원(2003) 일방향확산관을 통해 방류된 병합부력제트 의 거동, 대한토목학회논문집, 대한토목학회, 제23권 pp. 271-279.
  5. 박수길(2009) 원전 심층 취배수 구조물 건설을 위한 침매터널 시공방법 연구, 석사학위논문, 울산대 산업대학원.
  6. 이용곤, 정상화, 김창완, 김종강(2006), 보령화력발전소 7.8호기 순환수 취수에 대한 수리 및 수치모형 실험, 대한토목학회논문집, 대한토목학회, 제26권 제5호, pp. 459-467.
  7. 이진성, 조수, 심경종, 장문성, 손장열(2009) 댐의 심층저온수 취수시 성층화 유지조건에 대한 CFD를 이용한 분석, 한국태양에너지학회지, 한국태양에너지학회, Vol 29, No 2, pp. 31- 38.
  8. 임재호, 윤영덕, 김천주(2008) 신고리 1,2호기 원자력 발전소 수중배수 해상공사에 적용된 시공사례, 대한토목학회 정기학술대회논문집, 대한토목학회.
  9. 한국전력공사 전력연구원(1999) 냉각수 취수구조물 개선기술 연구, 한국전력공사.
  10. (社)電力土木技術協會出版委員會(1995) 火力.原子力發展所土木構造物の設計.
  11. Jirka, G.H. and Harleman, D.R.F. (1973) The Mechanics of submerged multiport diffusers for buoyant discharges in shallow water. Technical Report No. 169, Ralph M. Parson Laboratory for Water Resources and Hydrodynamics, M.I.T.
  12. US Nuclear Regulatory Commission (2009) Regulatory Guide 1.125, Physical Models for Design and Operation of Hydraulic Structures and Systems for Nuclear Power Plants.
  13. Tatsuaki Nakato (1994) A hydraulic model study of Korea electronic power corporation's ULCHIN nuclear units 3 and 4 circulation water and essential service water intake structures, IIHR Report No. 370.