DOI QR코드

DOI QR Code

산 촉매 가수분해에 의한 자이란 분해속도 연구

Kinetic Study on the Acid-catalyzed Hydrolysis of Xylan

  • 서영준 (전남대학교 농업생명과학대학 산림자원학부) ;
  • 이홍주 (전남대학교 농업생명과학대학 바이오에너지공학과) ;
  • 이재원 (전남대학교 농업생명과학대학 산림자원학부)
  • Seo, Young-Jun (Department of Forest Products and Technology (BK21 Program), Chonnam National University) ;
  • Lee, Hong-Joo (Department of Bioenergy Science and Engineering, Chonman National University) ;
  • Lee, Jae-Won (Department of Forest Products and Technology (BK21 Program), Chonnam National University)
  • 투고 : 2012.09.13
  • 심사 : 2012.11.16
  • 발행 : 2012.11.25

초록

본 연구는 산 촉매에 의한 자이란 분해속도를 분석하는 것으로 $120^{\circ}C$에서 60분 동안 가수분해를 수행하여 자이란 분해속도를 조사하였다. 산 촉매로는 황산, 옥살산, 말레산을 사용하였다. 자이란 분해에 관여하는 분해속도상수($k_1$)는 산 농도에 비례하여 증가하였으며 이것은 산 농도가 증가할수록 자이란 가수분해가 빠르게 진행된다는 것을 의미한다. 황산, 옥살산, 말레산 중에서 자이란에서 자이로스로 분해되는 속도는 황산을 촉매로 사용하였을 때 가장 높았다. 하지만 수소농도인 pH를 기준으로 하였을 때, 즉 같은 pH 조건에서 가수분해를 수행하였을 때 자이란에서 자이로스로 분해되는 속도는 옥살산, 말레산과 같은 dicarboxylic acid 촉매에서 황산을 사용하였을 때 보다 높은 분해속도상수를 나타냈다.

In this study, we investigated the kinetics of acid-catalyzed hydrolysis of xylan over a 60 min at $120^{\circ}C$. Sulfuric, oxalic and maleic acids were used as acid catalyst for hydrolysis. The calculated degradation rate constants ($k_1$) showed a correlation with the acid concentration, meaning that the stronger the acid, the higher the xylan degradation rate. Among sulfuric, oxalic and maleic acid catalyzed hydrolysis, the xylan degradation rate to xylose was highest with sulfuric acid. At equivalent solution pH, acid catalyzed hydrolysis was proportional to $H^+$ concentration. The $k_1$ of dicarboxylic acid such as oxalic and maleic acid was higher than that of sulfuric acid at same pH values during hydrolysis.

키워드

참고문헌

  1. Carrasco, F. and C. Roy. 1992. Kinetic study of dilute-acid-pre-hydrolysis of xylan containing biomass. Wood Science and Technology 26: 189-208.
  2. Ferraz, A., J. Rodriguez, J. Free, and J. Baeza, 2001. Biodegradation of Pinus radiate softwood by white- and brown-rot fungi. World Journal of Microbiology Biotechnology 17: 31-34. https://doi.org/10.1023/A:1016646802812
  3. Jensen, J. R., J. E. Morinelly, K. R. Gossen, M. J. Brodeur-Campbell, and D. R. Shonnard. 2010. Effects of dilute acid pretreatment conditions on enzymatic hydrolysis monomer and oligomer sugar yields for aspen, balsam, and switchgrass. Bioresource Technology 101: 2317-2325. https://doi.org/10.1016/j.biortech.2009.11.038
  4. Kootstra, A. M. J., N. S. Mosier, E. L. Scott, and H. H. Beeftink. 2009. Differential effects of mineral and organic acids on the kinetics of arabinose degradation under lignocellulose pretreatment conditions. Biochemical Engineering Journal 43: 92-97. https://doi.org/10.1016/j.bej.2008.09.004
  5. Lee, J. W. and T. W. Jeffries. 2011. Efficiencies of acid catalysts in the hydrolysis of lignocellulosic biomass over a range of combined severity factors. Bioresource Technology 102: 5884-5890. https://doi.org/10.1016/j.biortech.2011.02.048
  6. Lloyd, T. A. and C. E. Wyman. 2005. Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids. Bioresource Technology 96: 1967-1977. https://doi.org/10.1016/j.biortech.2005.01.011
  7. Mosier, N. S., A. Sarikaya, C. M. Ladisch, and M. R. Ladisch. 2001. Characterization of dicarboxylic acids for cellulose hydrolysis. Biotechnology Progress 17(3): 474-480. https://doi.org/10.1021/bp010028u
  8. Mosier, N. S., C. M. Ladisch, and M. R. Ladisch. 2002. Characterization of acid catalystic domains for cellulose hydrolysis and glucose degradation. Biotechnology and Bioengineering 79: 610-618. https://doi.org/10.1002/bit.10316
  9. Pan, X., C. Arato, N. Gilkes, D. Gregg, W. Mabee, K. Pye, Z. Xiao, X. Zhang, and J. N. Saddler. 2005. Biorefining of softwoods using ethanol organosolve pulping: preliminary evaluation of process streams for manufacture of fuelgrade ethanol and co-products. Biotechnology Bioengineering 90: 473-481. https://doi.org/10.1002/bit.20453
  10. Rafiqul, I. S. M. and A. M. M. Sakinah. 2012. Kinetic studies on acid hydrolysis of Meranti wood sawdust for xylose production. Chemical Engineering Science 71: 431-437. https://doi.org/10.1016/j.ces.2011.11.007
  11. Rahman, S. H. A., J. P. Choudhury, and A. L. Ahmad. 2006. Production of xylose from oil palm empty fruit bunch fiber using sulfuric acid. Biochemical Engineering Journal 30: 97-103. https://doi.org/10.1016/j.bej.2006.02.009
  12. Shimada, M. and M. Takahashi. 1991. Biodegradation of cellulosic materials. In Wood and Cellulosic Chemistry. M. Dekker; New York, Chapter 13.
  13. Soderstrom, J., L. Pilcher, M. Galbe, and G. Zacchi. 2003. Two-step steam pretreatment of softwood by dilute $H_2SO_4$ impregnation for ethanol production. Biomass Bioenergy 24: 475-486. https://doi.org/10.1016/S0961-9534(02)00148-4
  14. Sun, Y. and J. Cheng. 2002. Hydrolysis of lignocellulosic materials for ethanol production. Bioresource Technology 83: 1-11. https://doi.org/10.1016/S0960-8524(01)00212-7
  15. Tellez-Luis, S. J., J. A. Ramirez, and M. Vazquez. 2002. Methematical modelling of hemicellulose sugar production from sorghum straw. Journal of Food Engineering 52: 285-291. https://doi.org/10.1016/S0260-8774(01)00117-0
  16. Weerachanchai, P., S. S. J. Leong, M. W. Chang, C. B. Ching, and J. M. Lee. 2012. Improvement of biomass properties by pretreatment with ionic liquids for bioconversion process. Bioresource Technology 111: 453-459. https://doi.org/10.1016/j.biortech.2012.02.023
  17. Wingre, A., M. Galbe, and G. Zacchi. 2008. Energy consideration for a SSF-based softwood ethanol plant. Bioresource Technology 99: 222-231. https://doi.org/10.1016/j.biortech.2006.11.026