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Abstract

We particularly emphasized how to determine the number of replications with se-
quential and multistage procedures. So, the t-test is used to achieve some predetermined
level of accuracy efficiently with loss function in the case of normal, chi-squared, and
exponential distributions. We provided that the relevance of procedures are sequential
procedure, two-stage procedure, modified two-stage procedure, three-stage procedure,
and accelerated sequential procedure. Monte Carlo simulation is carried out to obtain
the stopping sample size that minimizes the risk.

Keywords: Accelerated sequential procedure, modified two-stage procedure, sequential
procedure, three-stage procedure, two-stage procedure.

1. Introduction

Suppose that we have a sequence of a fixed number of independent observations Xy, ... , X,
from a universe having a N (u, 0?) distribution with mean p and finite variance 0. We wish
to test Hy : u = o against Hy : p # pg at the preassigned level a,0 < o < 1. Then a
two-sided test would reject Hy if and only if |\/ﬁ()fn — ,UO)/Sn| > ty_1,a/2 Where X, is the
sample mean, S2 is the sample variance, and t,,_1 o> is the upper 100(a/2)% point of the
t distribution with n — 1 degree of freedom. So the size of the test will be exactly a. If a
population distribution is not normal, then we need the sample size n to be a large sample
size. Now, if the test procedure above is used in the case of non-normal distributions with
fixed n, how different will the true size of the test above be from the nominal level a.

We formulate the problem with loss function, and then proposed estimator of the test
above in the case of a normal, chi-square, and exponential distributions. In this problem, we
argue that sequential, two-stage, modified two-stage, three-stage, and accelerated sequential
procedure are provided. These methods are followed by numerical examples and analyses.
The procedures presented in this paper is explained with the help of interesting application
for design of computer experiments. Statistically designed experiments are considered essen-
tial for rapid learning and reducing time to market while preserving high quality and peak
performance. Recently, computer simulations have become increasingly popular for running

T This work was supported by the Institute of Natural Science Fund, Duksung Women’s University, 2012.
1 Professor, Department of Information and Statistics, Duksung Women’s University, Seoul 132-714,
Korea. E-mail: khchoi@duksung.ac.kr



1280 Kiheon Choi

experiments for the development of products and processes. Issues with computer simulated
experiments also common to physical experiments include the need to exploit sequential
methods. This new issue has sparked the development of new statistical methods, often
known as the design and analysis of computer experiments.

There are two major reasons for using sequential procedures in inference. The first is
to decrease expected sample size with regard to hypothesis testing. The second reason is
if there is no suitable fixed sample size procedure available. An early estimation example
of the latter is Stein’s two-stage procedure for estimating the mean of normal distribution
with unknown variance, a problem for which no fixed sample size procedure suffices for
all possible values of the variance. Usually, purely sequential procedures enjoy many desir-
able asymptotic properties. However, from a practical point of view, sampling with larger
batches can be observed quickly and hence one may be able to cut down the operational
time significantly compared with sampling sequentially when time or costs are important
design factors. Furthermore, Hall (1981) proposed a triple sampling procedure and showed
that the procedure combines the simplicity of Stein (1945) with the efficiency of the fully
sequential procedures. In particular, two-stage and three-stage point estimation problems
have been studied by Choi (2008, 2009), Ghosh and Mukhopadhyay (1980), Mukhopadhyay
(1985), Mukhopadhyay (1985), Hamdy et al. (1988), and Ghosh et al. (1997) in reviewing
the progress of multistage estimation methods. Also, Mukhopadhyay et al. (2004) present a
wide range of sequential methodology tools and research applications.

The plan of this paper is as follows. Section 2 proposes the sequential procedure, two-stage
procedure, modified two-stage procedure, three-stage procedure, and accelerated sequential
procedure, and then states the main result of this paper concerning its stopping sample size.
Section 3 presents some results of the moderate stopping sample size performance of the
procedure using the Monte Carlo method.

2. Sequential and multistage procedures

We start with a fixed choice of n and one population distribution function. The true
unknown type I error probability is given by

n(X, —
p= P{M> tn_l,a/z} 0<p<l,
and we define an indicator random variable
[ 1, if Hy is rejected
~ o0, if Hy is not rejected.

Given a sample of size n, one wishes to estimate p, by the sample mean I, = n=' 3" | I,
subject to the loss function
_ 2
I
L,=|—=-1 (2.1)
p

Note that the squared error loss is not very sensitive where p is small, but the proportional
loss is. For fixed n and p, the expected loss for (2.1) is given by

E[Ln]:E<I_”—1> _U-p)

p np
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Hence, we may like to estimate p by I, in such a way that given a preassigned number
w(> 0), the risk-bound, our goal is to make the associated risk E[L,] < w. It is a very
useful goal to achieve, particularly when w is chosen small. The risk is bound from above
by w, a preassigned positive number, if and only if the sample size n is the smallest integer
>w (1 —p)/p=n*, say.

In order to estimate p, we propose appropriate sequential, two-stage, modified two-stage,
three-stage, and accelerated sequential procedure for this problem.

2.1. Sequential procedure

Chow and Robbins (1965) proposed a purely sequential procedure for the stopping vari-
able. Let us assume that p is unknown, but p < po(< 1) where pg is known. Then, since
n* > w (1 — pg)/po, we define

—1 (1 —po)

m = m(w) = max { mg, |w
2]

where [u] = largest integer < u and my is a fixed integer. Notice that if w=!(1—pg)/po is an
integer, then [w_l(l - po)/po] + 1 will coincide with w=1(1 — pg)/po. Since the magnitude
of n* remains unknown, Robbins and Siegmund (1974) considered the following purely se-
quential stopping variable. We would start with the pilot Bernoulli observations Iy, ... , I,,
and then we would continue with one additional observation I at a time and employ the
stopping variable

N*EN*(w):min{an: nzw_l(l_jn_n_l)} (2.3)

+1 (2.2)

I, +n"1
Notice that N*(w) is well defined and is finite with probability 1. After stopping, the success
probability p would be estimated by py- = N* ' Xy« with Xy« = Zfil I; based on the
whole observed data (N*, I, ..., Iny+). Obviously, py+ is the sample proportion of 1s among
Ii,...,In~ upon termination.

2.2. Two-stage procedure

In some situation, the Robbins-Starr procedure cannot be recommended and a different
procedure has to be considered. Now, recall that the sequential procedure (2.2) had started
with m initial observations that were followed by drawing one additional observation at a
time until termination. Such one-observation-at-a-time sampling may be quite inconvenient
in some experimental situations. Sometimes, the data is obtained in batches and it might be
more appropriate to use methods which do not require including only one new observation
at time. The following is the two-stage sampling procedure in the light of Stein (1945).

Suppose the same setup as before with the optimal fixed-sample size n*. Let m be chosen
the same as in (2.2) and consider the following two-stage procedure. In the first stage, after
m intial or pilot trials, we have observed p,, = m~'X,,, the sample proportion of 1s, and

then define
+ 1} |

If Njg(w) = m, we stop sampling; otherwise, we move to the second stage. In the second
stage, if Njq(w) > m, we proceed by recording additional Nj.g(w) = Njg(w) —m obser-
vations, all in one single batch. Let X1g(w) be the total number is in the combined sample
from both stages. Then I, Nz is the final estimator of p.

(=1, - n=t)

N7g(w) = max {m, [w T+l
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2.3. Modified two-stage procedure

Stein’s two-stage procedure tends to overestimate optimal sample size, even asymptoti-
cally. This negative feature is due to the initial sample size m which causes big differences in
the final sample size Njq(w). A modified two-stage procedure which improves this feature
was suggested by Mukhopadhyay (1980).

The modified two-stage procedure varies the starting-sample size m. We choose a real
number v > 0. and define

1 2/(1+7)
m = m(w) = max | 2, () +1
w

We start the experiment with this number of observations and let

af.

We implement this Stein’s procedure in exactly the same manner as earlier.

1(1—[71—n’1)

Nirs(w) = max {m, lw T +nt

2.4. Three-stage procedure

The behaviour of Stein’s procedure can be improved by adding on additional sampling
stage to the algorithm. Hall (1981) introduced the three-stage procedure. The three-stage
procedure goes as follows. In the first stage we draw

1\ 70+
m = m(w) = max { 2, () +1
w

observations. The number of observations m is controlled by the tuning parameter v > 0.
To determine the intermediate sample size Ny,
s 1}

where 0 < p < 1 is a parameter controlling the sample size in this stage. We sample the
difference Ni" —m in the second stage if Ny > m. Now, based on I, ..., In;, we define

H}_

In the third stage, the sample size N7 is further augmented, if needed, that is, if Nz > N7,
with Nj; — N{ additional observations. At the stopped stage, 0 is estimated by In,,. .

NF — N B 71(1—fm—m*1)
{ =N{(w) =max{m, |pw T tm1

1—Iy: —N;7
I_Nl* +N; !

Nj; = Nj;(w) = max {Nf, [w‘l(

2.5. Accelerated sequential procedure

We have seen that the purely sequential procedure can be inconvenient to record obser-
vations one-by-one until the process terminates. Thus, it will be useful in practice if we
can offer a methodology terminating quickly with its sample size comparing favorably with
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that for a purely sequential strategy. An accelerated sequential procedure first proceeds
purely sequentially but continues only part of the way, followed by a batch of the remaining
observations gathered in one step.

Hall (1983) first developed an accelerated sequential estimation technique for this problem.
Let us choose and fix a number p, 0 < p < 1. We start with a pilot sample of size m(> 2)
and followed by one sample at a time as need. The stopping is defined as follows:

1—1,—n"t
t=t(w) = min{n >m;n > pw_1<1n+nl>},
(=1, —n7Y
Ni =N = A 1,
! 1(w) [w I, +n-1 +

Nac = Nac(w) = max {t(w), N1 (w)}.

If Nac > t, we sample the difference N 4o-+ in one single batch. Finally, based on the totality
of all samples I, ... ,In,., we estimate p by In,.. If p is chosen near zero, the accelerated
sequential procedure would clearly behave more like the two-stage procedure. But, if p
is chosen near one, the accelerated sequential procedure would behave like a sequential
procedure. In numerous problems, one tends to use p = 0.5.

3. Monte Carlo studies

One will note that most theoretical results obtained for the sequential and other multi-
stage procedures are indeed asymptotic in nature. There should be other concerns as well.
For example, how does one choose the starting sample size in all these procedures? In this
vein, we should add that there is no available optimality criteria in order to pick the best
starting sample size. Hence, we tackle this by taking a couple of initial sample size values and
examining any visible effects on the moderate sample performances of our procedures. By
the same token, the accelerated sequential procedure as well as the three-stage procedure
involve the choice of a proper fraction p, In the accelerated sequential case, we estimate
pw~! by means of sequential sampling followed by a batch sample, while in the case of
the three-stage procedure, we estimate pw ™' by means of two-stage sampling followed by
a batch sample naturally, one would expect that the choice of the p value will very likely
impact the performances of these procedures for moderate values of w. But, again, there is
no available optimality criteria yet in order to pick the best p. Hence, we try various values of
p € (0,1) and examine any visible effects or mark on such procedures. Also, how one should
choose 7 of the modified two-stage procedure. In our simulations, we consider v = 0(1)4. We
accomplish such investigations and comparisons via extensive sets of computer simulations
which we summarize here.

We have investigated the performance of the sequential, two-stage, modified two-stage,
three-stage, and accelerated sequential procedures on the one sample two-sided testing pro-
cedure under a variety of scenarios under the following configuration combinations: m = 5,
10, 20, 30, 50, mg = 100, w = 0.1,0.001 and with the population distribution functions given
by Normal with mean 5 and variance 2, exponential with A = 0.01, 0.1, 1, and chi-squared
distribution with degree of freedom 10, 20, 30, 50. The entire configurations were repeated
100 times.
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In the following Table 3.1 and 3.2, each represents the average obtained from the 100
replications for a particular value of sample size m = 5,10, 20, 30,50 and the chosen value
po. The overall features, trends, and conclusions were very similar when we had fixed w =
0.1,0.001.

From Table 3.1 and 3.2, we make the following assertions: this investigation revealed
no detectable common pattern that different choices of m, and the choice of py had no
appreciable impact on the final stopping simulation size.

The risk-bound w plays its expected role, that is as the risk decreased, a natural increase
in the stopping simulation size could be seen. Under the Normal distribution we found the
least variation in the stopping simulation size, followed closely by a similar pattern under
chi-squared distribution. The two-stage and three-stage procedures mimics the sequential
procedure with respect to the behavior of stopping simulation size.

Table 3.1 Sequential, three-stage and accelerated sequential procedures

Sequential procedure

w PO Normal Chisq Exp
df=10 df=20 df=30 df=50 A =0.01 A =0.1 A =1
0.06 192.4 176.4 185.4 185.4 185.6 160.8 161 160.6
0.1 0.10 180.2 161.9 167.3 173.7 174.5 120.8 119.4 119
0.30 180.6 161.3 166.3 169.5 172.7 120.7 120.9 121.6
0.06 19024.8 16663.1 17555.7 17949 18352.4 15667 15667 15667
0.001 0.10 19006.0 16363.6 17528.9 17962 18402 11278.8 11334.2 11289.4
0.30 19005.5 16314.8 17514.7 17948.7 18429.1 11005.9 10998.4 10979
Three-stage procedure ( p =0.1)
Chisq Exp
v Po Normal df=10 df=20 df=30 df=50 X =0.01 X =0.1 X =1
0.06 198.3 185 190 189.1 197.3 161.6 161.3 160.9
0.1 0.10 191.6 167.8 176 187 179 119.7 122.5 123.9
0.30 183.7 165.7 173.7 177.7 184.7 122.3 122.4 121.4
0.06 19003.6 16640 17569.3 17916.1 18386.9 15667 15667 15667
0.001 0.10 18994.3 16325.6 17598.2 17943.3 18391.4 11314 11351.6 11349.2
0.30 18930.9 16299.1 17582.6 17927.7 18359.3 11019.9 10982.2 11003.6
Three-stage procedure ( p =0.4)
i Chisq Exp
v Po Normal df=10 df=20 df=30 df=50 X =0.01 X =0.1 X =1
0.06 195.8 179.6 191 188.4 193.1 161.6 160.5 161.4
0.1 0.10 180.2 157.1 166.6 171.9 176.3 121.3 120.8 120.6
0.30 179 160.4 166.8 169.2 169 121.5 121.4 118.1
0.06 18993.2 16633.7 17603.9 18026.9 18430.4 15667 15667 15667
0.001 0.10 18960.1 16372.6 17559.3 18006.5 18418.5 11337 11299.9 11337.7
0.30 18962 16319.9 17576.6 17927.5 18275.7 10929.7 10997.4 10975.3
Three-stage procedure ( p =0.7)
w 0 Normal Chisq Exp
df=10 df=20 df=30 df=50 A =0.01 A =0.1 A =1
0.06 195.9 179.2 184 190.4 188.7 161.8 161.9 161.1
0.1 0.10 180.3 156.3 163.4 165.1 173.2 119 120.3 119.6
0.30 177.1 153.8 172.3 166.9 170.2 117.7 118.7 117.3
0.06 19030 16598 17556.1 17992.1 18315.1 15667.3 15667.1 15667.6
0.001 0.10 18994.9 16226.1 17575.4 17923.3 18417.9 11311.7 11298.5 11333.3
0.30 18919 16308.1 17519.3 17968 18414.2 10973.4 10980.1 10962
Three-stage procedure ( p =0.9)
} Chisq Exp
v Po Normal df=10 df=20 df=30 df=50 X =0.01 X =0.1 X =1
0.06 195.9 180.3 182.1 193.1 194.7 161.5 160.9 161.5
0.1 0.10 191.9 176.3 170.1 174.6 180.9 119.6 118.7 119.9
0.30 190.8 166.8 178 177 202.4 120.4 124.5 123.2
0.06 18964.2 16624.7 17526.8 17921.3 18388.9 15667 15667.4 15667.4
0.001 0.10 18967.3 16364.8 17471.4 18014.3 18392.5 11312.5 11301.2 11298.6
0.30 19114 16350.2 17548.9 18066.7 18427.8 10973.4 11009.2 11002.1
Accelerated sequential procedure ( p =0.5)
Chisq Exp
v Po Normal df=10 df=20 =30 df=50 X =0.01 X =0.1 N =1
0.1 184.3 162.1 669.8 910.1 1013 120.5 416.3 508.2
0.1 0.4 382.2 222.6 682.3 903.2 984.6 121.9 424.8 498.6
0.7 693.4 368.6 696.6 934.5 995.4 195.1 491.6 515.3
0.9 788.8 550.7 811.7 942.4 1026.8 321.2 498 515.3
0.1 21499 18884.2 31006.3 36345.7 39911 12102.5 20832.7 21856.2
0.001 0.4 20933.6 17320.5 29426.7 34780.1 39109.5 11307.1 19677 22014.1
0.7 23932.8 19545.1 29489.2 34922.8 39215.6 13186.1 19812.7 21573
0.9 28774.1 24199.4 31367.2 36286 39390.6 16745.2 20184.1 21843
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Let us now compare the procedures in Table 3.1 with one another. One can easily see that
the sequential procedure looks better than the other two procedures. This should not be very
surprising, because for the sequential procedure we update our estimators after each sample,
and after each sample we decide whether to take another sample or not. However, this very
property of bookkeeping after every sample makes the sequential procedure operationally
inconvenient and increases the cost of operation and implementation. So, to cut down the
cost of operation and to make the procedure more easily implementable and yet to preserve
the second order asymptotic properties, the accelerated sequential procedure and the three-
stage procedure come into the picture as viable competitors.

Table 3.2 Two-stage and three-stage procedures

Two-stage procedure

w o Normal Chisq Exp
df=10 df=20 df=30 =50 X =0.01 X =01 =
0.06 204.5 180.8 194.1 194.1 191.3 163.7 161.9 161.3
0.1 0.10 188.2 167.1 172.3 177 181.3 120.3 119.2 121.9
0.30 192.4 157.3 169.8 180 186.7 119.9 1231 124.4
0.06 18947 16626.6 17532.1 180115 18359.8 15667.1 15667.1 15667
0.001 0.10 189673 16318.3 17483.9 17971.4 18397.8 11324.9 11335.0 11298.7
0.30 15046.3 16296.1 174913 17927.8 183783 10975.5 11008.0 11008
Modified two-stage procedure ( 7 =0)
Chisq Exp
v Po Normal df=10 dr=20 df=30 dT=50 X =0.01 X =0.1 N =1
0.06 67.7 66.1 66.9 67.8 66.9 56.4 55 60.2
0.1 0.10 69 64.7 67.1 685 69.7 56.6 56.4 57.3
0.30 67.6 66.3 68.9 68.3 67.2 56.6 56.9 57.4
0.06 18875.7 163355 17628 181448 18288 11035 10902 11109.4
0.001 0.10 18839.6 16297.8 17590.7 17898.7 185422 10991.1 10956.9 10980.9
0.30 19104 163205 17618.3 17974.6 18400.2 10938.9 10998.9 11050.6
Modified two-stage procedure ( v —1)
Chisq Exp
v Po Normal df=10 dr=20 df=30 dr=50 X =0.01 X =0.1 N =1
0.06 19.7 19 9.8 19.4 19.4 18.2 8.1 8.1
0.1 0.10 153 19.4 195 19.4 19.7 178 7.9 178
0.30 19.8 19.5 19.2 19.3 19.8 18.2 18.4 18.1
0.06 15188.9 13488.6 14667.2 14667.9 15417.2 9995 .5 9456 9705.9
0.001 0.10 148115 14050.1 13452 11331.6 144457 10114.2 9775.6 9979.3
0.30 14642.7 13398.4 14322.6 139473 154242 9740.9 9909.4 10475
Modified two-stage procedure ( 4 =2)
w 0 Normal _ _ Chisq _ _ Exp
df=10 df=20 df=30 df=50 X =0.01 X =0.1 X =1
0.06 10.9 11 10.9 11 10.7 10.3 103 10
0.1 0.10 11 0.8 113 111 1 10.6 10.2 10.6
0.30 1 10.9 10.6 111 1.2 10.1 101 102
0.06 6820.7 6340.1 6645.7 6642.4 67481 5592.4 5456.7 5909.4
0.001 0.10 6702.4 6614.1 6740.7 6843.4 6836.7 5572.1 5581.8 5594.4
0.30 6775.7 6489.7 6709.3 6490.1 7002.4 5712.1 5511.8 5508.4
Modified two-stage procedure ( v =3)
w 0 Normal Chisq Exp
df=10 df=20 df=30 df=50 X =0.01 X =01 N =
0.06 5.2 9.1 5.1 5.2 5.1 5.6 5.6 55
0.1 0.10 9.1 92 5.2 5 9.1 5 57 5.6
0.30 52 9.1 52 5 5.1 55 58 58
0.06 3809.7 3839.1 3880.2 1018.5 39375 3605 3420.5 3491.4
0.001 0.10 3804.2 3828.9 3760.2 3854.1 39453 3396.2 3428.6 3440.6
0.30 1056.1 3931 3891.2 3877.5 3944.4 31992 3582.6 3634.4
Modified two-stage procedure ( v =4)
Chisq Exp
v Po Normal df=10 df=20 df=30 df=50 X =0.01 X =01 =
0.06 5.2 5 9 9.3 5.2 5.7 57 5.6
0.1 0.10 9.2 9.2 9.2 5.2 9.2 7.6 5.8 5.7
0.30 5.2 9.3 5.2 9.1 53 5.7 5.4 5.7
0.06 2723.7 2657.8 2653.3 2635.1 2703.7 5412.4 3437.6 3382.6
0.001 0.10 2610.4 2669.4 2612.4 2656.4 2683 2446.7 24101 21538
0.30 2701.9 2433.9 2653.3 2633.9 2646.7 2411.6 3436.8 2459.6

In Table 3.2, we present a summary of our findings in connection with the two-stage and
the modified two-stage procedure. In the case of the modified two-stage procedure, a small
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~v will lead to a large value of stopping simulation size. The point is that we wish to give
some useful recommendations about v which are not too small. The various entries are self
explanatory.

In the case of the two-stage and modified two-stage procedures, the choice of the starting
sample size was a crucial factor in achieving good performances of these techniques in non
asymptotic situations. This was the case because the common value was to be estimated
only once, based on first stage or pilot sample sizes, and there was no possibility of revision
or updating such estimators in the follow up. The sequential, accelerated sequential and the
three-stage sampling procedures are very different on this count. In the sequential procedure,
the estimators are updated with every new observation from each population arriving se-
quentially. So, as long as the starting sample size is not very large, one will essentially do just
fine because even a wrongfully chosen small starting sample size is going to be checked and
updated again and again, throughout the sampling process. In other words, it is quite alright
to be conservative here and pick a small starting sample size. Similar arguments or their
variants are also valid in the contexts of both the accelerated sequential and three-stage
procedures. In summary, we add that these three multistage procedures are fairly robust
with respect to the starting sample size.

Our remarks from the previous indicate little in the performance of the sequential, the
two-stage procedure, the modified two-stage procedure, the three-stage procedure, and ac-
celerated sequential procedure as measured by their stopping simulation sizes. It should be
obvious that each procedure has its own set of strengths and weaknesses. Hence, it is not
possible to declare a clear winner. On account of such extreme similarities across simulations,
our recommendation of one procedure over the other relies heavily on the determination of
which procedure runs more efficiently. The modified two-stage procedure terminated with
a stopping simulation size that was smaller than that required by the corresponding the
other procedures. The suggestions offered here have not taken into account any kind of de-
tailed cost-benefit analysis. Our suggestions are essentially guided by only very rudimentary
operations of each procedure.
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