DOI QR코드

DOI QR Code

Models for forecasting food poisoning occurrences

식중독 발생 예측모형

  • Yeo, In-Kwon (Department of Statistics, Sookmyung Women's University)
  • Received : 2012.09.26
  • Accepted : 2012.11.06
  • Published : 2012.11.30

Abstract

The occurrence of food poisoning is usually modeled by meteorological variables like the temperature and the humidity. In this paper, we investigate the relationship between food poisoning occurrence and climate variables in Korea and compare Poisson regression and autoregressive moving average model to select the forecast model. We confirm that lagged climate variables affect the food poisoning occurrences. However, it turns out that, from the viewpoint of the prediction, the number of previous occurrences is more influential to the current occurrence than meteorological variables and Poisson regression model is less reliable.

식중독 발생에 대한 기존 연구에서는 기온과 습도와 같은 기후변수가 주된 설명변수로 취급되어 왔다. 이 논문에서는 주별 식중독 발생건수와 기후변수 간에 관계를 고찰하고 식중독 발생건수를 예측하기 위한 모형으로 포아송 회귀모형과 자기회귀이동평균모형을 비교한다. 비교결과 우리나라 식중독 발생은 시차를 두고 기후 변수에 영향을 많이 받고 있으나 식중독 발생 예측은 이들 변수보다 이전 시점의 식중독 발생 건수에 더 많이 영향을 받는 것으로 나타났으며 포아송 회귀모형은 예측의 관점에서 문제가 있음을 보였다.

Keywords

References

  1. Bentham, G. and Langfod, I. H. (1995). Climate change and the incidence of food poisoning in England Wales. International Journal of Biometeorology, 39, 81-96. https://doi.org/10.1007/BF01212585
  2. Choi, K., Kim, B., Bae, W., Jung, W. and Cho, Y (2008). Developing the index of foodborne disease occurrence. The Korean Journal of Applied Statistics, 21, 649-658. https://doi.org/10.5351/KJAS.2008.21.4.649
  3. Fleury, M. Charron, D. F., Holt, J. D., Allen, O. D. and Maarouf, A. R. (2006). A time series analysis of the relationship of ambient temperature and common bacterial enteric infections in two Canadian provinces. International Journal of Biometeorology, 50, 385-391. https://doi.org/10.1007/s00484-006-0028-9
  4. Jang, H. and Joo, Y. (2009). Change of temperature patterns in Seoul. Journal of the Korean Data & Information Science Society, 20, 89-96.
  5. Jeong, M. S. and Oh, S. S. (2009). Study on the impact analysis and control system of foodborne disease outbreak due to climate change, Korea Food & Drug Administration, Seoul.
  6. Jung, H. S., Kim, B. J., Cho, S. and Yeo, I. K. (2012). Analysis of food poisoning via zero inflation models. The Korean Journal of Applied Statistics, 25, 859-864. https://doi.org/10.5351/KJAS.2012.25.5.859
  7. Kim, D., Hong, S. and Park, J. (2009). Predicting an soil temperature in Daegu area. Journal of the Korean Data & Information Science Society, 20, 649-654.
  8. Magny, G. C., Murtugudde, R., Sapiano, M. R. P and Colwell, R. R (2008). A environmental signatures associated with cholera epidemics. Proceedings of the National Academy of Sciences of the United States of America, 105, 17676-17681. https://doi.org/10.1073/pnas.0809654105
  9. Park, J. P. (2010). Estimating variation in the microbiological quality of seasoned soybean sprouts using probability model. Journal of the Korean Data & Information Science Society, 21, 909-916.
  10. Patrick, M. E., Christiansen, L. E., Steen Ethelberg, M. W., Madsen, H. and Wegener, H. C. (2004). Effects of climate on incidence of Camphylobacter spp. in humans and prevalence in broiler flocks in Denmark. Applied and Environmental Microbiology, 70, 7474-7480. https://doi.org/10.1128/AEM.70.12.7474-7480.2004
  11. Yeo, I. K. (2011). Clustering analysis of Korea's meterological data. Journal of the Korean Data & Information Science Society, 22, 941-949.

Cited by

  1. Prediction of the Number of Food Poisoning Occurrences by Microbes vol.26, pp.6, 2013, https://doi.org/10.5351/KJAS.2013.26.6.923