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ON FOURIER COEFFICIENTS OF SOME MEROMORPHIC

MODULAR FORMS

Yutaro Honda and Masanobu Kaneko

Abstract. We prove a congruence modulo a prime of Fourier coefficients
of several meromorphic modular forms of low weights. We prove the result
by establishing a generalization of a theorem of Garthwaite.

1. Main theorem

For integers k ≥ 0 and N ≥ 1, let Mk(Γ0(N)) (resp. Sk(Γ0(N))) be the
space of holomorphic modular (resp. cusp) forms of weight k on the standard
congruence subgroup Γ0(N) of the modular group SL2(Z). Let

Ek(z) = 1− 2k

Bk

∞∑
n=1

(∑
d|n

dk−1
)
qn (Bk : the Bernoulli number, q = e2πiz)

be the normalized Eisenstein series of weight k for SL2(Z) and

η(z) = q1/24
∞∏

n=1

(1− qn)

the Dedekind eta function. For a prime p and a modular form f(z) =
∑

c(n)qn,
we consider the U(p)-operator defined by

(f |U(p))(z) :=
∑

c(pn)qn.

We denote by Z(p) the set of rational numbers whose denominators are prime
to p.

In the present paper, we prove the following theorem.

Theorem 1. 1) For k ∈ {4, 6, 8, 10, 14} and any prime p with p ≡ 1 (mod 3),
we have

Ek(6z)

η(6z)4

∣∣∣∣U(p) ≡ 0 (mod p).
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Here, the congruence means every Fourier coefficient on the left-hand side is
divisible by p.

2) For k ∈ {4, 6}, any prime p ≡ 1 (mod 4), and any modular form f(z) ∈
Mk(Γ0(2)) ∩ Z(p)[[q]] having p-integral rational Fourier coefficients, we have

f(4z)

η(4z)2η(8z)2

∣∣∣∣U(p) ≡ 0 (mod p).

3) For any prime p ≡ 1 (mod 3) and any modular form f(z) ∈ M4(Γ0(3))∩
Z(p)[[q]], we have

f(3z)

η(3z)2η(9z)2

∣∣∣∣U(p) ≡ 0 (mod p).

4) For any prime p ≡ 1 (mod 3) and any modular form f(z) ∈ M4(Γ0(4))∩
Z(p)[[q]], we have

f(3z)

η(6z)4

∣∣∣∣U(p) ≡ 0 (mod p).

We prove the theorem by establishing a generalization of a theorem of Sharon
Garthwaite [1], which we state and prove in the next section where we prove the
theorem. In the last section we give some conjectures concerning congruences
modulo higher powers of p, as well as the motivation of this work.

We should like to thank Ken Ono for showing us the proof of 1) of the
theorem by using the original theorem of Garthwaite. Also our thanks go
to Pavel Guerzhoy, who made substantial progress concerning our conjecture
using the theory of weak harmonic Maass forms and whose interest gave us a
strong impetus to write up the present paper.

2. Proof

To prove Theorem 1, we use the following theorem. The case of N = 1 is
due to Garthwaite [1, Theorem 1.3].

Theorem 2. Fix a prime number p ≥ 5. For a natural number N ∈ {1, 2, 3, 4},
let a and b be integers satisfying

1 ≤ a ≤ b− 2, b ∈


{4, 6, 8, 10, 14}, if N = 1,

{4, 6}, if N = 2,

{4}, if N = 3, 4,

and set k = a(p− 1) + b. Suppose f(z) ∈ Sk(Γ0(N)) ∩ Z(p)[[q]]. Then we have

(f |U(p))(z) ≡ 0 (mod p).

Proof. We give a somewhat simpler proof of the case N = 1. The point is to
construct an appropriate auxiliary function, and once it is found, the argument
in other cases of N = 2, 3, 4 is completely parallel.
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Suppose

f(z) =
∞∑

n=0

c(n)qn ∈ Sk(Γ0(1)) ∩ Z(p)[[q]] (Γ0(1) = SL2(Z)).

We prove the theorem (when N = 1) by induction on n. Since f(z) is a cusp
form, we have c(0) = 0. Let n ≥ 1 and assume c(pm) ≡ 0 (mod p) for all m

with 0 ≤ m ≤ n− 1. We introduce the following function gn(z) = g
(1)
n (z);

gn(z) :=
E4(z)

3p(n−1)E14−b(z)
p−1Ep−1(z)

b−a−2

Eb(z)
.

This is a meromorphic modular form of weight

12(pn− 1)− a(p− 1)− b = 12(pn− 1)− k.

We claim that the product f(z)gn(z) is a holomorphic modular form. The
proof is as follows. The weight of f(z)gn(z) is 12(pn − 1), a multiple of 12.
The possible poles of f(z)gn(z) come from the denominator Eb(z) of gn(z)
which has zeros of order at most 2 at points equivalent to e2πi/3 and at most
1 at points equivalent to

√
−1. On the other hand, by the well-known valence

formula, the orders of pole of f(z)gn(z) (of weight a multiple of 12) at e2πi/3 is
a multiple of 3 and at

√
−1 a multiple of 2. Therefore the function f(z)gn(z)

cannot have poles and is a holomorphic modular form of weight 12(pn − 1).
Hence the function

f(z)gn(z)

∆(z)pn−1
,

where ∆(z) = η(z)24 is the cusp form of weight 12, is of weight 0 and holomor-
phic on the upper half-plane, and thus is a polynomial in the elliptic modular
function

j(z) =
E4(z)

3

∆(z)
.

We conclude then that the function

f(z)gn(z)

∆(z)pn−1
(−j′(z)) (j′(z) =

1

2πi

d

dz
j(z))

is a derivative of a polynomial in j(z) and thus the constant term of the Fourier
expansion of

f(z)gn(z)

∆(z)pn−1
(−j′(z)) =

f(z)E4(z)
3p(n−1)E14−b(z)

pEp−1(z)
b−a−2

∆(z)pn

(note Eb(z)E14−b(z) = E14(z) and −j′(z) = E14/∆(z)) vanishes. Write

E4(pz)
3(n−1)E14−b(pz)

∆(pz)n
= q−pn +

∞∑
l=−n+1

a(pl)qpl.
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Then we have

0 = constant term of
f(z)E4(z)

3p(n−1)E14−b(z)
pEp−1(z)

b−a−2

∆(z)pn

≡ constant term of
f(z)E4(pz)

3(n−1)E14−b(pz)

∆(pz)n
(mod p)

≡ constant term of (f |U(p))(pz)
(
q−pn +

∞∑
l=−n+1

a(pl)qpl
)

(mod p)

≡ constant term of
(
c(pn)qpn+

∞∑
l=n+1

c(pl)qpl
)(
q−pn+

∞∑
l=−n+1

a(pl)qpl
)
(mod p)

≡ c(pn) (mod p).

We have used the well-known congruence Ep−1(z) ≡ 1 (mod p). This estab-
lishes the case N = 1 by induction.

For N = 2, we put

g(2)n (z) :=
E

(2)
4 (z)p(n−1)E

(2)
6−b(z)

pEp−1(z)
b−a−2

E
(2)
6 (z)

,

where we define the Eisenstein series (at infinity) E
(2)
k (z) of even weight k for

Γ0(2) by

E
(2)
k (z) :=


1, k = 0,

2E2(2z)− E2(z), k = 2,

2kEk(2z)− Ek(z)

2k − 1
, k ≥ 4.

Here, Ek(z) is the Eisenstein series for SL2(Z) (E2(z) = 1 − 24q − 72q2 − · · ·
is a “quasimodular” form, but E

(2)
2 (z) is modular). The weight of g

(2)
n (z)

is 4(pn − 1) − k. Since the zeros of E
(2)
6 (z) are at the cusp 0 and at ρ2 =

(−1+
√
−1)/2 (and points equivalent to them), and are both simple, and since

by the valence formula we know that the order of pole at ρ2 of f(z)g
(2)
n (z) (of

weight 4(pn−1), a multiple of 4) is even, we conclude that the form f(z)g
(2)
n (z)

is a holomorphic modular form. Let ∆(2)(z) be defined by

∆(2)(z) :=
η(2z)16

η(z)8
(= q + 8q2 + 28q3 + 64q4 + 126q5 + · · · ).

This is a modular form of weight 4 on Γ0(2) having only simple zero at infinity.
The function

j(2)(z) :=
E

(2)
4 (z)

∆(2)(z)
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is the “Hauptmodul” of Γ0(2) and the quotient

f(z)g
(2)
n (z)

∆(2)(z)pn−1

is a polynomial in j(2)(z). We argue as in the case N = 1 by using −j(2)(z)′ =

E
(2)
6 (z)/∆(2)(z) to see the constant term of

f(z)g
(2)
n (z)

∆(2)(z)pn−1
(−j(2)(z)′) =

f(z)E
(2)
6−b(z)

pEp−1(z)
b−a−2

∆(2)(z)pn

is 0. The proof of the theorem using this by induction goes completely in the
same manner.

For N = 3, we put

g(3)n (z) :=
E

(3)
1 (z)p−1∆

(3)
0 (z)p(n−1)Ep−1(z)

2−a

E
(3)
4 (z)

,

where E
(3)
1 (z), ∆

(3)
0 (z) and E

(3)
4 (z) are defined by

E
(3)
1 (z) := 1 + 6

∞∑
n=1

(∑
d|n

(
d

3

))
qn = 1 + 6q + 6q3 + 6q4 + 12q7 + · · · ,

∆
(3)
0 (z) :=

η(z)9

η(3z)3
= 1− 9q + 27q2 − 9q3 − 117q4 + 216q5 + · · · ,

E
(3)
4 (z) :=

34E4(3z)− E4(z)

34 − 1
= 1− 3q − 27q2 + 159q3 − 219q4 + · · · ,

the symbol
(
d
3

)
being the Legendre character. Further, let ∆

(3)
∞ (z) and j(3)(z)

be defined by

∆(3)
∞ (z) :=

η(3z)9

η(z)3
= q + 3q2 + 9q3 + 13q4 + 24q5 + · · · ,

j(3)(z) :=
E

(3)
1 (z)3

∆
(3)
∞ (z)

=
1

q
+ 15 + 54q − 76q2 − 243q3 + · · · .

The functions E
(3)
1 (z), ∆

(3)
0 (z) and ∆

(3)
∞ (z) are “Nebentypus” modular forms

for Γ0(3) of weights 1, 3, and 3 respectively. Their even powers are modular for

Γ0(3). The modular form E
(3)
4 (z) (of weight 4) has its zeros at the cusp 0 and

ρ3 = −1/2+
√
−3/6, both being simple. From this and the valence formula (if

the weight is a multiple of 3, the order at ρ3 is divisible by 3), we conclude as
before that, for a cusp form f(z) of weight a(p− 1) + 4, the function

f(z)g
(3)
n (z)

∆
(3)
∞ (z)pn−1
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(which has no pole at the cusp 0) is a polynomial in j(3)(z) and by using

−j(3)(z)′ = E
(3)
1 (z)E

(3)
4 (z)/∆

(3)
∞ (z) that the constant term of

f(z)g
(3)
n (z)

∆
(3)
∞ (z)pn−1

(−j(3)(z)′) =
f(z)E

(3)
1 (z)p∆

(3)
0 (z)p(n−1)Ep−1(z)

2−a

∆
(3)
∞ (z)pn

vanishes. The rest of the arguments is the same.
Finally, when N = 4, we put

g(4)n (z) :=
∆

(4)
0 (z)p(n−1)

E
(4)
4 (z)

,

where

∆
(4)
0 (z) :=

η(z)8

η(2z)4
= 1− 8q + 24q2 − 32q3 + 24q4 − · · ·

is weight 2 and

E
(4)
4 (z) :=

24E4(4z)− E4(2z)

24 − 1
= 1− 16q2 + 112q4 − 448q6 + · · ·

is weight 4 modular form on Γ0(4). The form E
(4)
4 (z) has zeros only at cusps 0

and −1/2 which are simple, and so for any cusp form f(z) of weight a(p−1)+4

the product f(z)g
(4)
n (z) is a holomorphic modular form of weight 2(pn − 1).

With the weight 2 modular form

∆(4)
∞ (z) :=

η(4z)8

η(2z)4
= q + 4q3 + 6q5 + 8q7 + 13qq + · · ·

having only zero at infinity, we consider the quotient

f(z)g
(4)
n (z)

∆
(4)
∞ (z)pn−1

,

which is of weight 0 and has pole only at infinity, and hence a polynomial in
the Hauptmodul

j(4)(z) :=
E

(4)
2 (z)

∆
(4)
∞ (z)

,

where E
(4)
2 (z) := (4E2(4z) − E2(z))/3. We have −j(4)(z)′ = E

(4)
4 (z)/∆

(4)
∞ (z)

and, just as in the previous cases, the constant term of

f(z)g
(4)
n (z)

∆
(4)
∞ (z)

(−j(4)(z)′) =
f(z)∆

(4)
0 (z)p(n−1)

∆
(4)
∞ (z)pn

is 0. We can proceed in the same way as before and completes the proof of
Theorem 2. □
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Proof of Theorem 1. 1) For k ∈ {4, 6, 8, 10, 14} and p ≡ 1 (mod 3), consider
the form

Fk(z) := Ek(z)∆(z)
p−1
6

which is a cusp form with integer coefficients of weight 2(p− 1)+k on SL2(Z).
To this form we apply Theorem 2 to obtain

Fk(z)|U(p) ≡ 0 (mod p)

and this is apparently equivalent to

Fk(6z)|U(p) ≡ 0 (mod p).

On the other hand, we have

∆(6z)
p−1
6 = η(6z)4(p−1) ≡ η(6pz)4

η(6z)4
(mod p).

We therefore have

Ek(6z)

η(6z)4
η(6pz)4

∣∣∣∣U(p) ≡ 0 (mod p).

This clearly implies
Ek(6z)

η(6z)4

∣∣∣∣U(p) ≡ 0 (mod p),

which is to be proved.
2) For k ∈ {4, 6}, p ≡ 1 (mod 4), and f ∈ Mk(Γ0(2))∩Z(p)[[q]], consider the

cusp form

F
(2)
k (z) := f(z)

(
η(z)8η(2z)8

) p−1
4 .

Here, η(z)8η(2z)8 is the cusp form of weight 8 on Γ0(2). Applying Theorem 2
with the same argument as in 1), we obtain 2) of Theorem 1.

3) Here also the proof goes in the same manner by looking at the cusp form

F
(3)
k (z) := f(z)

(
η(z)6η(3z)6

) p−1
3 ,

where η(z)6η(3z)6 is the cusp form of weight 6 on Γ0(3).
4) This case the form

F
(4)
k (z) := f(z)

(
η(2z)12

) p−1
3

plays the same role as previous cases and we are done. □

3. Remarks

By computer calculations, we are tempted to pose the following.

Conjecture 1. Let k ∈ {4, 6, 8, 10, 14}, p ≡ 1 (mod 3) and

Fk(z) =
Ek(6z)

η(6z)4

as in Theorem 1. Then the congruence

Fk(z)|U(p)m ≡ 0 (mod pm(k−3))
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holds for any integer m, and similarly for other cases N = 2, 3, 4.

We may also expect that Theorem 2 could be extended to congruences of
higher power of p, but this extension seems not enough to imply the above
conjecture.

As mentioned in §1, P. Guerzhoy [2] proved the conjecture for k = 6 and
“almost” proved for k = 4 (with some defect in power), as well as other cases
of p not considered in this paper. He uses the theory of weak harmonic Maass
forms and it seems the techniques there could imply various general results.

Finally, we mention our motivation of looking at those particular meromor-
phic modular forms in Theorem 1. In [3], we studied various modular (and
quasimodular) solutions of the following differential equation (with a parame-
ter k), which appeared in [4] in connection to supersingular j-invariants:

f ′′(z)− k + 1

6
E2(z)f

′(z) +
k(k + 1)

12
E′

2(z)f(z) = 0.

This differential equation is also closely related to the two dimensional confor-
mal field theory (cf. e.g., [5]). For k = 4, this equation has E4(z) as a solution
and the other independent solution is given by

E4(z) ·
∫ i∞

z

∆(z)5/6

E4(z)2
dz

2πi
,

which is apparently not modular. We were curious about the arithmetic nature
of this solution, and found numerically that no primes of the form 3n + 1
appear in the denominators of coefficients of q(6n+5)/6 in ∆(z)5/6/E4(z)

2. By
the equation

∆(z)5/6

E4(z)2
= − 1

3456

E4(z)

η(z)4
− 1

576

(
E6(z)

η(z)4E4(z)

)′

( ′ = q
d

dq
),

this is equivalent to the statement in Theorem 1-1) with k = 4. We natu-
rally searched for other meromorphic modular forms having similar congruence
property. There are many examples to which our proof given here does not
apply.

References

[1] S. Garthwaite, Convolution congruences for the partition function, Proc. Amer. Math.
Soc. 135 (2007), no. 1, 13–20.

[2] P. Guerzhoy, On the Honda-Kaneko congruences, preprint, 2011.
[3] M. Kaneko and M. Koike, On modular forms arising from a differential equation of

hypergeometric type, Ramanujan J. 7 (2003), no. 1-3, 145–164.
[4] M. Kaneko and D. Zagier, Supersingular j-invariants, hypergeometric series, and Atkin’s

orthogonal polynomials, Computational perspectives on number theory (Chicago, IL,
1995), 97–126, AMS/IP Stud. Adv. Math., 7, Amer. Math. Soc., Providence, RI, 1998.

[5] S. Mathur, S. Mukhi, and A. Sen, On the classification of rational conformal field theory,
Phys. Lett. B 213 (1988), no. 3, 303–308.



ON FOURIER COEFFICIENTS OF SOME MEROMORPHIC MODULAR FORMS 1357

Yutaro Honda
5-12-18-503
Nishitenma Kita-ku
Osaka 530-0047, Japan

E-mail address: yu ta ro honda@yahoo.co.jp

Masanobu Kaneko

Faculty of Mathematics
Kyushu University
Fukuoka 819-0395, Japan
E-mail address: mkaneko@math.kyushu-u.ac.jp


