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A NOTE ON QUASI-PERIODIC PERTURBATIONS OF

ELLIPTIC EQUILIBRIUM POINTS

Houyu Zhao

Abstract. The system

ẋ = (A+ εQ(t, ε))x+ εg(t, ε) + h(x, t, ε),

where A is elliptic whose eigenvalues are not necessarily simple and h

is O(x2). It is proved that, under suitable hypothesis of analyticity, for
most values of the frequencies, the system is reducible.

1. Introduction and main result

Before stating our questions, we first give some definitions and notations.

Definition 1.1. A function f : R → R is called real analytic quasi-periodic
with the frequencies ω = (ω1, ω2, . . . , ωr) if it can be represented as a Fourier
series of the type

(1.1) f(t) =
∑

k

fke
i〈k,ω〉t,

where k = (k1, . . . , kr), 〈k, ω〉 =
∑
kjωj 6= 0 if k 6= 0, the coefficients fk decay

exponentially with |k| = |k1|+ · · ·+ |kr|.
We denote by Q(ω) the set of real analytic quasi-periodic functions with the

frequencies ω.
From the above definition, we see that the function F : ϑ = (ϑ1, . . . , ϑr) ∈

Rr → R defined by

F (ϑ) =
∑

k

fke
i〈k,ϑ〉

is 2π-periodic in each variable and bounded in a complex neighborhood of
Rr : |Imϑj | ≤ ρ for some ρ > 0. This function is called a shell function of f.
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Definition 1.2. Let v(t) be a quasi-periodic function with rationally indepen-
dent frequencies ω1, . . . , ωr and shell function V , satisfying v(t) = V (ω1t, . . .,
ωrt). Then the limit

lim
T→∞

1

T

∫ T

0

v(t)dt

is called the time average of v, coincides with the space average

v0 =
1

(2π)r

∫

Tr

V (ϑ)dϑ

and we denote the common value by v as well.

Definition 1.3. Let Qρ(ω) ⊂ Q(ω) be the set of real analytic functions f such
that the corresponding shell functions F are bounded on the subset Θ(ρ) =
{(ϑ1, . . . , ϑr) ∈ Cr : |Imϑj | ≤ ρ}, with the sup-norm

‖f‖ρ = sup
ϑ∈Θ(ρ)

∣∣∣∣∣
∑

k

fke
i〈k,ϑ〉

∣∣∣∣∣ = sup
ϑ∈Θ(ρ)

|F (ϑ)| .

By Cauchy’s formula, it follows that

(1.2) |fk| ≤ ‖f‖ρe−|k|ρ and |fϑ|ρ′ ≤ (ρ− ρ′)−1‖f‖ρ
for f ∈ Qρ(ω) and 0 < ρ′ < ρ.

Since N. N. Bogoljubov et al. [1] in 1960’s proved reducibility of non-autono-
mous finite-dimensional linear systems to constant coefficient equations by
KAM-technique, establishing the reducibility of finite-dimensional systems by
means of the KAM tools has become an active field of research. Such results are
also included in [11]. In this directions, we refer [2]-[16] and references therein
for a detailed description. In particular, A. Jorba and C. Simó [9] investigated
the reducibility of the quasi-periodic ordinary differential equation

ẋ = (A+ εQ(t, ε))x+ εg(t, ε) + h(x, t, ε),(1.3)

where A is an elliptic constant square matrix with order d (that is, all the
eigenvalues are purely imaginary and nonzero), Q is a square matrix with or-
der d, h is a vector function of second order in x, and Q, g, h are quasi-periodic
in time t with frequency vector ω = (ω1, ω2 . . . , ωr). Such equation (1.3) is
an autonomous differential equation under quasi-periodic time-dependent per-
turbations near an elliptic equilibrium point. More precisely, under suitable
conditions of analyticity, nonresonance and nondegeneracy with respect to ε,
A. Jorba and C. Simó [9] proved that the system (1.3) is reducible for ε in some
Cantorian set E ⊂ (0, ε0) with ε0 sufficiently small, provided that

(1) the eigenvalues λ1, . . . , λd of A are different;

(2) the eigenvalues λ01(ε), . . . , λ
0
d(ε) of A = A + εQ(ε) + Dxh(x(t, ε), t, ε)

satisfy

(1.4) 0 < 2δ|ε1 − ε2| < |λ0i (ε1)− λ0j (ε1)− λ0i (ε2) + λ0j(ε2)| <
δ

2
|ε1 − ε2|,
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(1.5) 0 < 2δ|ε1 − ε2| < |λ0k(ε1)− λ0k(ε2)| <
δ

2
|ε1 − ε2|

for all i, j, and k satisfying 1 ≤ i < j ≤ d and 1 ≤ k ≤ d, and provided that |ε1|
and |ε2| are less than some small value ε0. Here x(t) is the unique analytical
quasi-periodic solution of ẋ = Ax+ εg(t, ε).

Naturally, we should ask that whether or not (1.3) is reducible when condi-
tions (1) or (2) is not satisfied. In this paper, we will give an answer to this
question.

Throughout this paper, we always assume that the following hypothesis is
satisfied:

(H) Q(t), g(t), and h(t) are in Qρ(ω) and ω ∈ Dγ :

Dγ : =

{
ω ∈ R

r :

∣∣∣∣|
√
−1(k, ω)Ed −A|e

∣∣∣∣ >
γ

|k|τ ,

∣∣∣∣|
√
−1(k, ω)Ed2 − Ed ⊗A+A⊤ ⊗ Ed|e

∣∣∣∣ >
γ

|k|τ

}
,

where k ∈ Zr \ {0}, 1 ≤ i, j ≤ d, γ > 0, τ ≥ r − 1 and | · |e denotes the
determinant of a matrix.

If x ∈ Rn, we denote by ‖x‖ the sup norm of x. If A is a matrix, ‖A‖ denotes
the corresponding sup-norm, and for a matrix-valued function Q(t), define

||Q||U = sup
t∈U

||Q(t)||,

where || · || is the sup-norm of the matrix.
In the present paper, we will follow the techniques developed in [9] and [16]

to prove the following result.

Theorem 1.1. Assume that (H) is satisfied. Let Ω0 ⊂ Rr be a compact set

with positive Lebesgue measure. Consider the system (1.3) and assume that

(A1) detA 6= 0, and Q(t, ε), g(t, ε) and h(x, t, ε) are in Qρ(ω) with ω ∈ Ω0.
(A2) h(x, t, ε) is analytic with respect to x on the ball Bκ(0) centered in the

origin with radius κ, h(0, t, ε) = 0 and ‖Dxxh(x, t, ε)‖ ≤ K with ‖x‖ ≤ κ and K
positive constant. Then for a sufficiently small positive constant γ, there exist

a subset Ω ⊂ Ω0 with Meas(Ω0 \Ω) =Meas(Ω0)(1−O(γ
1
d2 )) and a sufficiently

small constant ǫ(ρ, γ) > 0 such that for any ε ∈ (0, ǫ), there is an analytic

quasi-periodic transformation y = Ψ(t)x with the basic frequencies ω such that

the system (1.3) is transformed into

ẏ = A∞(ε)y + h∞(y, t, ε),

where A∞ is a constant matrix and h∞(y, t, ε) is of second order in y.

Corollary 1. Under the hypothesis of Theorem 1.1, for any ε ∈ (0, ǫ), (1.3)
has a quasi-periodic solution xε(t) with basic frequencies ω such that

lim
ε→0
ε∈E

||xε|| = 0.
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2. Preliminary lemmas

Lemma 2.1. Let us consider the equation

(2.1) ẋ = Ax+ εg(t),

where A is a d × d matrix with detA 6= 0 and g(t) ∈ Qρ1(ω). If 0 < ρ2 < ρ1
and ω ∈ Dγ , then the equation (2.1) has a unique quasi-periodic solution x(t) ∈
Qρ2(ω) satisfying

‖x‖ρ2 ≤ εL1‖g‖ρ1,
where L1 = ‖A−1‖+ C

γ

(
τ
e

)τ
(1+e)r

(
ρ1−ρ2

2 )τ+r
.

Proof. We write

x(t) =
∑

k∈Zr

xke
√
−1(k,ω)t, g(t) =

∑

k∈Zr

gke
√
−1(k,ω)t,

where xk and gk are vectors. From ẋ = Ax+ εg(t) we get

(2.2)
(√

−1(k, ω)Ed −A
)
xk = εgk,

where Ed is a d dimension unit matrix.
When k = 0, because detA 6= 0, we get

|x0| ≤ ε||A−1||ρ2 |g0| ≤ ε||A−1||ρ1 ||g||ρ1 .
When k 6= 0, by (H) and (1.2), the equation (2.2) is solvable for ω ∈ Dγ ,

and

(2.3) |xk| ≤ ε
∥∥∥
(√

−1(k, ω)Ed −A
)−1∥∥∥

ρ2
|gk| ≤ εC

|k|τ
γ

||g||ρ1e−ρ1|k|.

Further, we have

||x||ρ2 ≤ ε||A−1||ρ1 ||g||ρ1 +
∑

k 6=0

εC
|k|τ
γ

||g||ρ1e−(ρ1−ρ2)|k|

≤ ε
[
||A−1||+ C

γ

(τ
e

)τ (1 + e)r

(ρ1−ρ22 )τ+r

]
||g||ρ1

= εL1||g||ρ1 ,(2.4)

where the second inequality follows from Lemma 6.1. �

Lemma 2.2. Consider the equation

(2.5) Ṗ = AP − PA+Q∗,

where A is a d× d matrix and Q∗(t) =
∑

0<|k|≤M Qke
√
−1(k,ω)t ∈ Qρ1(ω). Let

0 < ρ2 < ρ1 and ω ∈ Dγ. Then the equation (2.5) has a unique quasi-periodic

solution P (t) ∈ Qρ2(ω) satisfying

||P ||ρ2 ≤ L2||Q||ρ1 ,

where Q =
∑
k∈Zr Qke

√
−1(k,ω)t, L2 = C

γ

(
τ
e

)τ
(1+e)r

(
ρ1−ρ2

2 )τ+r
.
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Proof. Let

P (t) =
∑

0<|k|≤M
Pke

√
−1(k,ω)t.

Then it is easy to see that

(2.6)
(√

−1(k, ω)Ed −A
)
Pk + PkA = Qk.

By (H), (1.2) and Lemma 6.1, we have

|Pk| ≤
∥∥∥
(√

−1(k, ω)Ed2 − Ed ⊗A+A⊤ ⊗ Ed

)−1∥∥∥
ρ2
|Qk|

≤ C
|k|τ
γ

||Q||ρ1e−ρ1|k|(2.7)

and

||P ||ρ2 ≤
∑

0<|k|≤M
C
|k|τ
γ

||Q||ρ1e−ρ1|k|eρ2|k|

≤
∑

k∈Zr

C
|k|τ
γ

||Q||ρ1e−(ρ1−ρ2)|k|

≤ C

γ

(τ
e

)τ (1 + e)r

(ρ1−ρ22 )τ+r
||Q||ρ1 .(2.8)

�

Lemma 2.3. Let us consider

(2.9) ẋ = (A+ εQ(t))x+ εg(t) + h(x, t),

where Q(t), g(t), h(x, t) ∈ Qρ1(ω) and 0 < ρ2 < ρ1. Also, we assume that h(x, t)
is analytic with respect to x on the ball Bκ(0) and satisfies ||Dx,xh(x, t)||ρ1 ≤
K, ∀x ∈ Bκ(0). Then for a solution x(t) ∈ Qρ2(ω) of the equation (2.1), the
change of variables x = y + x(t) transforms the initial equation (2.9) into

ẏ = (A+ εQ̃1(t))y + ε1g1(t) + h1(y, t),

where ε1 = ε1+ι and Q̃1 has zero average and the following bounds hold for

ω ∈ Dγ :

1. ||Q̃1||ρ2 ≤ 2||Q||ρ1 + 2KL1||g||ρ1 , where L1 was defined in Lemma 2.1.

2. ||g1||ρ2 ≤
(
KL2

1(||g||ρ1)
2

2 + L1||Q||ρ1 ||g||ρ1
)
ε1−ι.

3. ||A|| ≤ ||A||+ ε(||Q||ρ1 +KL1||g||ρ1).
4. ||Dyyh1||ρ2 ≤ K.
5. ||x||ρ2 ≤ εL1||g||ρ1 .

Here y ∈ Bκ1(0), κ1 = κ− ||x||ρ2 , and ε is small enough.

Proof. Let x be such that ẋ = Ax+ εg. In Lemma 2.1, we have

||x||ρ2 ≤ εL1||g||ρ1 .
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By the change of variables x = y + x(t), we can obtain

ẏ = (A+ εQ1(t))y + ε1g1(t) + h1(y, t),

where Q1 = Q + 1
ε
Dxh(x(t), t), g1 = 1

ε1+ιh(x(t), t) +
1
ει
Qx(t) (ε 6= 0), and

h1(y, t) = h(x(t) + y, t)− h(x(t), t) −Dxh(x(t), t)y. Like [9], the terms of this
equation must be bounded. First, by Lemma 6.4, we have

||Q1||ρ2 ≤ ||Q||ρ2 +
1

ε
K||x||ρ2 ≤ ||Q||ρ1 +KL1||g||ρ1 .

Then we bound ||g1||ρ2 , also from Lemma 6.4, we get

||g1||ρ2 ≤ K

2

1

ε1+ι
(||x||ρ2)2 +

1

ει
||Q||ρ1 ||x||ρ2

≤
(KL2

1(||g||ρ1)2
2

+ L1||Q||ρ1 ||g||ρ1
)
ε1−ι.

The third one is Dyyh1(y, t),

||Dyyh1||ρ2 = ||Dxxh(x(t) + y, t)|| ≤ K.

So we must require that y ∈ Bκ1(0), where κ1 = κ− ||x||ρ2 . We define Q1(t) =

Q1 + Q̃1(t), A = A+ εQ1, we obtain

ẏ = (A+ εQ̃1(t))y + ε1g1(t) + h1(y, t).

At last,

||A|| ≤ ||A||+ ε||Q1||ρ2
≤ ||A||+ ε||Q1||ρ2
≤ ||A||+ ε(||Q||ρ1 +KL1||g||ρ1),

and
||Q̃1||ρ2 ≤ 2||Q1||ρ2 ≤ 2(||Q||ρ1 +KL1||g||ρ1). �

Lemma 2.4. Let us consider

(2.10) ẋ = (A+ εQ(t))x+ ε1g(t) + h(x, t),

where Q(t), g(t), h(x, t) ∈ Qρ1(ω), 0 < ρ2 < ρ1 and Q has zero average. Also,

we assume that h(x, t) is analytic with respect to x on the ball Bκ(0) and sat-

isfies ||Dxxh(x, t)||O1
ρ1

≤ K, ∀x ∈ Bκ(0). Then the change of variables x =
(E + εP (t))y with P (t) ∈ Qρ2(ω) transforms the initial equation (2.10) into

ẏ = (A+ ε1Q̃1(t))y + ε1g1(t) + h1(y, t),

where Q̃1 has zero average, E is the identity d × d matrix and the following

bounds hold for ω ∈ Dγ :

1. ||Q̃1||ρ2 ≤ 2ε1−ι
(L′

2+||P ||ρ2)
1−ε||P ||ρ2

||Q||ρ1 , where ||P ||ρ2 ≤ L2||Q||ρ1 and L2 was

defined in Lemma 2.2.

2. ||g1||ρ2 ≤ 1
1−ε||P ||ρ2

||g||ρ1 .
3. ||A|| ≤ ||A||+ ε2

(L′

2+||P ||ρ2)
1−ε||P ||ρ2

||Q||ρ1 .
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4. ||Dyyh1||ρ2 ≤ K
(1+ε||P ||ρ2)

2

1−ε||P ||ρ2
.

Here y ∈ Bκ2(0), where κ2 = κ
1+ε||P ||ρ2

, and ε is small enough.

Proof. By the change of variables x = (E + εP )y, we can obtain

ẏ =
(
E+ εP

)−1(
A+ ε(Q∗ +AP − Ṗ )+ (εQ∗∗+ ε2QP )

)
y+ ε1g1(t) +h1(y, t),

where

Q = Q∗ +Q∗∗,

Q∗(t) =
∑

0<|k|≤M
Qke

√
−1(k,ω)t,

Q∗∗(t) =
∑

|k|>M
Qke

√
−1(k,ω)t,

g1 = (E + εP )−1g, and

h1(y, t) = (E + εP )−1h((E + εP )y, t).

We would like to have

(E + εP )−1(A+ ε(Q∗ +AP − Ṗ )) = A,

this implies that
Ṗ = AP − PA+Q∗.

From Lemma 2.2 we have

||P ||ρ2 < L2||Q||ρ1 .
We obtain the equation

ẏ = (A+ ε1Q1(t))y + ε1g1(t) + h1(y, t),

where ε1Q1 = (E + εP )−1(εQ∗∗ + ε2QP ).
Now we bounded the terms of this equation. In fact

||Q∗∗||ρ2 ≤
∑

|k|>M
||Qk||ρ2eρ2|k|

≤ ||Q||ρ1
∑

|k|>M
e−(ρ1−ρ2)|k|

= ||Q||ρ1
∑

|k|>0

e−(ρ1−ρ2)(|k|+M)

≤ ε||Q||ρ1
∑

|k|>0

e−(ρ1−ρ2)|k|

≤ εL′
2||Q||ρ1 ,(2.11)

then

||ε1Q1||ρ2 ≤ 1

1− ε||P ||ρ2
(ε||Q∗∗||ρ2 + ε2||Q||ρ2 ||P ||ρ2 )
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≤ ε2
(L′

2 + ||P ||ρ2)
1− ε||P ||ρ2

||Q||ρ1 ,(2.12)

and

||Q1||ρ2 ≤ ε1−ι
(L′

2 + ||P ||ρ2 )
1− ε||P ||ρ2

||Q||ρ1 ,

||g1||ρ2 ≤ 1

1− ε||P ||ρ2
||g||ρ1 ,

||Dyyh1||ρ2 ≤ K

1− ε||P ||ρ2
(||E + εP ||ρ2)2 ≤ K

(1 + ε||P ||ρ2)2
1− ε||P ||ρ2

,

in this we require y ∈ Bκ2(0), where κ2 = κ
1+ε||P ||ρ2

, and ε is small enough.

Let Q1(t) = Q1 + Q̃1(t), A = A+ ε1Q1. Then we obtain

ẏ = (A+ ε1Q̃1(t))y + ε1g1(t) + h1(y, t).

At last,

||A|| ≤ ||A||+ ε1||Q1||ρ2 ≤ ||A||+ ε2
(L′

2 + ||P ||ρ2)
1− ε||P ||ρ2

||Q||ρ1 ,

||Q̃1||ρ2 ≤ 2||Q1||ρ2 ≤ 2ε1−ι
(L′

2 + ||P ||ρ2)
1− ε||P ||ρ2

||Q||ρ1 .
�

3. Iterative lemma

We will invoke the KAM iterative technique to prove Theorem 1.1. To that
end, for given ε > 0, ρ > 0 and r > 0, we first introduce some iterative
sequences.

(i) ε0 = ε, εn = ε(1+ι)
n−1

, ι = 1
4 , n = 1, 2, . . . ;

(ii) ρ0 = ρ, ρn = ρ0 − ρ0
2

(1+2−2+···+n−2)∑
∞
j=1 j

−2 , n = 0, 1, 2, . . . ;

(iii) qn = ε
1

4d2

n+1, n = 0, 1, 2, . . . , where d is the dimensional number of
system (1.3);

(iv) Θn = Θ(ρn) = {ϑ = (ϑ1, ϑ2, . . . , ϑr) ∈ Cr/2πZr : |Imϑ| < ρn}, n =
0, 1, 2, . . . ;

(v) σn = ρ0 − ρ0
2

(1+2−2+···+n−2+ (n+1)−2

2 )
∑

∞

j=1 j
−2 , q̃n = qn+qn+1

2 .

Let Π0 = Ω0 and define the sets

R∗
k(n) =

{
ω ∈ Πn−1 :

∣∣∣|
√
−1(k, ω)Ed2 − Ed ⊗An +A⊤

n ⊗ Ed|e
∣∣∣ < γn

|k|τ1
}
,

R∗∗
k (n) =

{
ω ∈ Πn−1 :

∣∣∣|
√
−1(k, ω)Ed −An|e

∣∣∣ < γn
|k|τ1

}
,

(3.1) Rk(n) = R∗
k(n)

⋃
R∗∗
k (n),
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where γn = γ

n2d2
and τ1 = (r + 1)d2 and

(3.2) Πn = Πn−1 \
⋃

0<|k|<Mn

Rk(n),

where Mn = | ln εn|
ρn−1−ρn . Then Πn is the sequence of compact closed subsets of

Rr+ with

Ω0 = Π0 ⊃ Π1 · · · ⊃ Πn ⊃ · · ·
and from Lemma 5.2, we have

MeasRk(n) ≤
2

n2

Rγ
1
d2

|k|r+1
,

and

Meas
⋃

0<|k|<Mn

Rk(n) ≤
∑

06=k∈Zr

MeasRk(n)

≤ 2

n2
Rγ

1
d2

∑

06=k∈Zr

1

|k|r+1

≤ 4r

n2
Rγ

1
d2

∞∑

m=1

mr−1 1

mr+1
=

2π2r

3n2
Rγ

1
d2 ,

where we use that #{k ∈ Zr/|k| = m} ≤ 2rmr−1.
Then, we can prove that

MeasΠn =Meas

(
Π0 −

n⋃

i=1

⋃

0<|k|<Mi

Rk(i)

)

>

(
1− 2π2

3
rR

( n∑

i=1

1

i2

)
γ

1
d2

)
MeasΠ0,

and

MeasΠ∞ = (1 −O(γ
1
d2 ))MeasΠ0.

We let that On and Un are the complex qn-neighborhood and q̃n-neighbor-
hood of Πn respectively, and construct iteratively a series of equations of the
form

(E)n ẋn = (An(ω) + εnQn(t, ω))xn + εngn(t, ω) + hn(xn, t, ω),

and where the following conditions are satisfied:
(H1)n Qn(t, ω) and gn(t, ω) are analytic in Θn ×On, and

(3.3) max{||Qn(t, ω)||Θn×On , ||gn||Θn×On} ≤ 1.

(H2)n hn(xn, t, ε) is analytic with respect to xn on the ball Bκn
(0), where

κn is a sequence with κ0 = κ and limn→∞ κn > 0.
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Lemma 3.1 (Iterative lemma). Assume that (H1)n and (H2)n are satisfied.

Then for ε small sufficiently there is a transformation

(3.4) Φn : xn = (E + εnPn(t, ω))xn+1 + xn,

where xn satisfies ẋn(t) = Anxn(t)+εngn(t) and Pn(t, ω) is analytic in Θn×On

and quasi-periodic with frequency ω, such that (E)n is changed into (E)n+1 and

(H1)n+1 and (H2)n+1 are fulfilled.

Proof. Now we apply the change of variables xn(t) = yn(t) + xn(t), where xn
satisfies ẋn(t) = Anxn(t) + εngn(t), and Lemma 2.3 to (E)n. Then we get

(3.5) ẏn = (Ân(ω) + εnQ̂n(t, ω))xn + εn+1ĝn(t, ω) + ĥn(xn, t, ω),

where the analyticity strip reduce to σn, and

Ân = An + εnQn(t) +Dxhn(xn(t), t),

Q̂n(t) = Qn(t)−Qn(t) +
1

εn

(
Dxhn(xn(t), t)−Dxhn(xn(t), t)

)
,

ĝn(t) = ε−(1+ι)
n hn(xn(t), t) + ε−ιn Qn(t)xn(t),

ĥn(t) = hn(xn(t) + yn, t)− hn(xn(t), t)−Dxhn(xn(t), t)yn,

where we omit the dependence on ω to simplify the notation.
Then we apply the change of variables yn(t) = (E + εnPn(t))xn+1(t) and

Lemma 2.4 to (3.5), we have
(3.6)
ẋn+1 = (An+1(ω) + εn+1Qn+1(t, ω))xn+1 + εn+1gn+1(t, ω) + hn+1(xn+1, t, ω).

Now the analyticity strip has been reduced to ρn+1, and

An+1 = Ân + (E + εnPn(t))−1
(
εnQ̂∗∗

n (t) + ε2nQ̂n(t)Pn(t)
)

= An + εnQn(t) +Dxhn(xn(t), t),

Qn+1(t) = ε−1
n+1(E + εnPn(t))

−1
(
εnQ̂

∗∗
n (t) + ε2nQ̂n(t)Pn(t)

)

− ε−1
n+1(E + εnPn(t))−1

(
εnQ̂∗∗

n (t) + ε2nQ̂n(t)Pn(t)
)

= ε−1
n+1(E + εnPn(t))

−1
(
εnQ̂

∗∗
n (t) + ε2nQ̂n(t)Pn(t)

)

= ε−(1+ι)
n (E + εnPn(t))

−1
(
εnQ

∗∗
n (t) +Dxh

∗∗
n (xn(t), t)

)

+ ε−ιn (E + εnPn(t))
−1

(
εnQn(t)− εnQn(t) +Dxhn(xn(t), t)−Dxhn(xn(t), t)

)
Pn(t),

gn+1(t) = (E + εnPn(t))
−1ĝn(t)

= (E + εnPn(t))
−1hn(xn(t), t)ε

−(1+ι)
n +(E +εnPn(t))

−1Qn(t)xn(t)ε
−ι
n ,
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hn+1(t) = (E + εnPn(t))
−1ĥn((E + εnPn(t))xn+1(t), t)

= (E + εnPn(t))
−1
(
hn
(
xn(t) + (E + εnPn(t))xn+1, t

)

− hn(xn(t), t)−Dxhn(xn(t), t)(E + εnPn(t))xn+1

)
,

where Q̂n(t) = Q̂∗∗
n (t) = 0. So, by the change of variables xn(t) = (E +

εnPn(t))xn+1(t) + xn(t), Lemma 2.3 and Lemma 2.4, we can transform (E)n
to (E)n+1. �

In the following, we will prove the terms of (E)n+1 is bounded by the terms of
(E)n, and we will use L1,n, L2,n denote the values of L1, L2 which is introduced
in Lemmas 2.1 and 2.2, also L′

2,n in place of L′
2. Moreover, as in [9], we use

the symbol Kn to be the bound of the second derivative of hn and by the same
method in [9], we can find {Kn} is convergent, we omit the proof.

First we note that a fact εn||Pn||Θn+1×On+1 ≤ 1
2 which will be proved in the

below, then for εn small enough, we will find

||Qn+1||Θn+1×On+1 ≤ 1, ||gn+1||Θn+1×On+1 ≤ 1.

In fact, from Lemmas 2.3 and 2.4, we have

||Qn+1||Θn+1×On+1 ≤ 2ε1−ιn

(L′
2,n + ||Pn||Θn+1×On+1)

1− εn||Pn||Θn+1×On+1
||Q̂n||Θ(σn)×Un

≤ 4ε1−ιn (L′
2,n + L2,n||Q̂n||Θ(σn)×Un)||Q̂n||Θ(σn)×Un

≤ 8L1,n(1 +KnL1,n)(3 + 2KnL1,n)ε
1−ι
n ,

since L1,n > max{L2,n, L
′
2,n} and

||Q̂n||Θ(σn)×Un = 2(||Qn||Θn×On +KnL1,n||g||Θn×On),

and Kn ≤ (92 )
nK0 is the bound of the second derivative of hn. We can assume

γ ≤ 1, then L1,n > 1, there is

||Qn+1||Θn+1×On+1 ≤ 24L3
1,n(1 +Kn)

2ε1−ιn ≤ 1.

From Lemmas 2.3 and 2.4 now bound the norm of gn+1 as

||gn+1||Θn+1×On+1 ≤ 2||ĝn||Θ(σn)×Un

≤
(
KnL

2
1,n||gn||Θn×On+2L1,n||Qn||Θn×On ||gn||Θn×On

)
ε1−ιn

≤ (Kn + 2)L2
1,nε

1−ι
n ≤ 1.

Thus, if ε is a sufficiently small constant, we have

lim
n→∞

εn||Qn||Θn×On = lim
n→∞

εn||gn||Θn×On = 0.

Now we bound ||Pn||Θn+1×On+1. From Lemmas 2.3 and 2.4, we have

||Pn||Θn+1×On+1 ≤ 2L2,n

(
||Qn||Θn×On +KnL1,n||gn||Θn×On

)
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≤ 4(
9

2
)nL1,nL2,nK0

and limn→∞ εn||Pn||Θn+1×On+1 = 0, for ε small enough, thus we do not mind
to take εn||Pn||Θn+1×On+1 < 1

2 . The bound of ||xn||Θ(σn)×Un is

||xn||Θ(σn)×Un ≤ εnL1,n||gn||Θn×On < εnL1,n.

Now we will show that if ε is small enough, the limit radius κn of the ball
where hn analytic with respect to x is positive. Then from Lemma 2.4 and
Lemma 2.3 we have

κn+1 =
1

1 + εn||Pn||Θn+1×On+1
κn − ||xn||Θ(σn)×Un

1 + εn||Pn||Θn+1×On+1
,

like [9] we define an = 1
1+εn||Pn||Θn+1×On+1

, bn = ||xn||Θ(σn)×Un

1+εn||Pn||Θn+1×On+1
, and

when ε is small enough, by Lemma 6.5 it is easy to find
∏∞
n=0 an and

∑∞
n=0 bn

are convergent, so κ∞ ≥ aκ0 − b > 0.
Now let us bound ||An|| as

||An+1|| ≤ ||Ân||+ ε2n
(L′

2,n + ||Pn||Θn+1×On+1)

1− εn||Pn||Θn+1×On+1
||Q̂n||Θ(σn)×Un

≤ ||An||+ εn(||Qn||Θn×On +KnL1,n||gn||Θn×On)

+ ε2n
(L′

2,n + ||Pn||Θn+1×On+1)

1− εn||Pn||Θn+1×On+1
||Q̂n||Θ(σn)×Un

≤ ||An||+ εn

(
1 + (

9

2
)nK0L1,n

)

+ 4ε2n

(
1 + (

9

2
)nK0L1,n

)(
L′
2,n + 4(

9

2
)nL1,nL2,nK0

)

≤ ||An||+ ςn,

where ςn ≤ εnC
′ for a suitable C′, when ε is small enough, we have

∑∞
n=1 ςn

convergent, so we can ensure that the matrices An → B, when n→ ∞.

4. Proof of Theorem 1.1

We remark that the system (1.3) satisfies (Eν), (H1)ν and (H2)ν with ν = 0,
the iterative procedure in Lemma 3.1 can run repeatedly. So, there exists a
sequence of transformation xn = (E + εnPn(t, ω))xn+1 + xn, n = 0, 1, 2, . . . ,
such that Pn(t) are analytic in the domains Θn+1 ×On+1. Let

Θ∞ ×O∞ =

∞⋂

n=1

Θn ×On.

Then, all the Pn, n = 1, 2, . . . , are well defined in the domain Θ∞ ×O∞, and
we have

xn+1 = Φ−1
n (t)xn = Φ−1

n (t) ◦ Φ−1
n−1(t)xn−1

= · · ·
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= Φ−1
n (t) ◦ Φ−1

n−1(t) ◦ · · · ◦ Φ−1
0 (t)x0,

i.e.,

xn+1 = (E + εnPn)
−1xn − (E + εnPn)

−1xn

= (E + εnPn)
−1 ◦

(
(E + εn−1Pn−1)

−1xn−1

− (E + εn−1Pn−1)
−1xn−1

)
− (E + εnPn)

−1xn

= (E + εnPn)
−1 ◦ (E + εn−1Pn−1)

−1xn−1

− (E + εnPn)
−1 ◦ (E + εn−1Pn−1)

−1xn−1

− (E + εnPn)
−1xn

= · · ·
= (E + εnPn)

−1 ◦ (E + εn−1Pn−1)
−1 ◦ · · · ◦ (E + ε0P0)

−1x0

−
n∑

i=0

(E + εnPn)
−1 ◦ · · · ◦ (E + εiPi)

−1xi,

where xi is a solution of the equation as in Lemma 2.1.
We set

Ψn(t) = Φ−1
n (t) ◦ Φ−1

n−1(t) ◦ · · · ◦ Φ−1
0 (t).

Note that

||xn||Θ∞×U∞ ≤ ||xn||Θ(σn)×Un < εnL1,n, lim
n→∞

εn||Pn||Θn+1×On+1 = 0,

then

||Ψn+1(t)−Ψn(t)||Θ∞×U∞

=
∣∣∣
∣∣∣Φ−1
n+1(t) ◦Ψn(t)−Ψn(t)

∣∣∣
∣∣∣
Θ∞×U∞

≤
∣∣∣
∣∣∣Φ−1
n+1(t)− E

∣∣∣
∣∣∣
Θ∞×U∞

||Ψn(t)||Θ∞×U∞

≤
(
||(E + εn+1Pn+1)

−1 − E||Θ∞×U∞

+
∣∣∣
∣∣∣(E + εn+1Pn+1)

−1xn+1

∣∣∣
∣∣∣
Θ∞×U∞

)
||Ψn(t)||Θ∞×U∞

≤
( εn+1||Pn+1||Θn+2×Un+2

1− εn+1||Pn+1||Θn+2×Un+2
+

εn+1L1,n+1

1− εn+1||Pn+1||Θn+2×Un+2

)
||Ψn(t)||Θ∞×U∞

≤ (2εn+1||Pn+1||Θn+2×Un+2 + 2εn+1L1,n+1)||Ψn(t)||Θ∞×U∞ ,

it is easy to find that

||Ψn(t)||Θ∞×U∞ < +∞,

so {Ψn(t)} is convergent on Θ∞×U∞, where we use εn+1||Pn+1||Θn+2×On+2 < 1
2

as in Lemma 3.1. We see that Ψ(t) = limn→∞ Ψn(t) is well defined, let

y = Ψ(t)x.
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Then, the transformation y = Ψ(t)x change (1.3) into

ẏ = A∞(ε)y + h∞(y, t, ε).

This completes the proof of Theorem 1.1.

5. Measure lemma of the allowed frequencies set

In this section, we bound the measure of the resonances and in the proving,
C is positive constants.

Lemma 5.1. Let τ = τ1 + d2 − 1 and

G∗(ω) =
√
−1(k, ω)Ed2 − Ed ⊗An +A⊤

n ⊗ Ed,(5.1)

G∗∗(ω) =
√
−1(k, ω)Ed −An(ω).(5.2)

Then, for ω ∈ On and 0 < |k| ≤ Mn, the inverse of G∗(ω) and G∗∗(ω) exist,

moreover, they are analytic in the domain On with

(G∗)−1(ω) ≤ C
|k|τ
γn

, (G∗∗)−1(ω) ≤ C
|k|τ
γn

,(5.3)

respectively.

Proof. This proof like the Lemma 3.1 in [16], we omit it. �

Lemma 5.2. Let R = d2(d+ 1)2(diamΠ0)
r−1. Then the Lebesgue measure of

Rk(n) satisfies

MeasRk(n) ≤
2

n2

Rγ
1
d2

|k|r+1
.(5.4)

Proof. From Lemma 2.4 and Lemma 2.3 we have

An+1(ω) = An(ω) + εnQn(ω) +Dxh(xn(t, ω), t).(5.5)

First, we know that qs = ε
1

4d2

s+1, let q1,s = 5
6qs +

1
6qs+1, q2,s = 11

12qs +
1
12qs+1,

and Oi,s are the qi,s-neighborhood of Πs respectively for i = 1, 2, more-
over, ρ1,s = 5

6ρs +
1
6ρs+1, ρ2,s = 11

12ρs +
1
12ρs+1 are the size of the analytic-

ity domain in the angular variables. Obviously, Os+1 ⊂ O1,s ⊂ O2,s ⊂ Os

and dist(∂O1,s, ∂Os) > dist(∂O2,s, ∂Os) = dist(∂O1,s, ∂O2,s) > 1
24qs, and

ρs+1 < ρ1,s < ρ2,s < ρs. Recall that ||Qs||Θs×Os ≤ 1 and ||gs||Θs×Os ≤ 1,
then for 1 ≤ l ≤ d2 and 0 ≤ s ≤ n,
(5.6)

εs||∂lωQs(ω)||Θ1,s×O1,s ≤ εs
24l

qls
||Qs(ω)||Θs×Os ≤ εs

24l

qls
||Qs(ω)||Θs×Os ≤ ε

1
2
s ,

||∂lωDxh(xs(t, ω), t)||Θ1,s×O1,s ≤ 24l

qls
||Dxh(xs(t, ω), t)||Θ2,s×O2,s
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≤ 24l

qls
||Dxh(xs(t, ω), t)||Θ2,s×O2,s

≤ 24l

qls
Ks||xs(t, ω)||Θ2,s×O2,s

≤ εs
24l

qls
KsL̃1,s||gs(ω)||Θs×Os ≤ ε

1
2
s .(5.7)

Now from (5.6) and (5.7), the norm boundedness of every terms in (5.5) and
recursiveness, for a sufficiently small ε, we have

||∂lωAn+1(ω)||Θ1,n×O1,n ≤ ε
1
2 .

Let B(ω) = −Ed ⊗An(ω) +A⊤
n (ω)⊗ Ed = (bij). Then

||∂lωB(ω)||Θ1,n−1×O1,n−1 ≤ ε
1
2 ,

obviously, for 1 ≤ l ≤ d2 and ω ∈ O1,n−1,

|∂lω1
bij | ≤ ||∂lωB(ω)||Θ1,n−1×O1,n−1 ≤ ε

1
2 .(5.8)

Set T (ω) = |
√
−1(k, ω)Ed2 +B(ω)|e. Then

T (ω) =
√
−1

d2

(k, ω)d
2

+
∑

1≤ν≤d2−1

χν(ω)(k, ω)
d2−ν ,(5.9)

where

χν(ω) =
∑

1≤ji≤d2
σj1···jν b1j1 · · · bνjν and σj1···jν ∈ {−1,+1,−

√
−1,+

√
−1}.

For ω ∈ O1,n−1, 1 ≤ l ≤ d2, by (5.8),

∣∣∣ d
l

dωl1
(b1j1 · · · bljν )

∣∣∣ ≤
∣∣∣∣∣

∑

l1+···+lν=l

( dl1

dωl11
b1j1

)
· · ·
( dlν

dωlν1
b1jν

)∣∣∣∣∣

≤ ε
l
2

∑

l1+···+lν=l
1

≤ 2lε
l
2 ,(5.10)

and ∣∣∣∣∣
dl

dωl1
χν(ω)

∣∣∣∣∣ ≤
(
d2

ν

)
2lε

l
2 .(5.11)

Now, without loss of generality, we can assume that |k| = |k1|+· · ·+|kr| ≤ r|k1|.
Then, for every ω ∈ O1,n−1,

∣∣∣∣∣
dd

2

dωd
2

1

∑

1≤ν≤d2−1

χν(ω)(k, ω)
d2−ν

∣∣∣∣∣
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≤
∑

1≤ν≤d2−1

∣∣∣∣∣
dd

2

dωd
2

1

(
χν(ω)(k, ω)

d2−ν
)∣∣∣∣∣

≤
∑

1≤ν≤d2−1

∑

1≤l≤d2

(
d2

l

)∣∣∣∣∣
dl

dωl1
χν(ω)

∣∣∣∣∣

∣∣∣∣∣
dd

2−l

dωd
2−l

1

(k, ω)d
2−ν

∣∣∣∣∣

≤
∑

1≤ν≤d2−1

∑

1≤l≤d2

(
d2

ν

)(
d2

l

)
2lε

l
2 |k1|d

2−l|(k, ω)|l−νd2!

≤ ε
1
2C1|k1|d

2−1d2!,(5.12)

where C1 is some constant which depends only on d, r and on the maximum of
|ω| in Π0. Obviously,

(5.13)
dd

2

dωd
2

1

(k, ω)d
2

= d2!|k1|d
2

,

moreover, in O1
n−1, for ε small enough so that C1ε

1
2 < 1

2 , by (5.12) and (5.13)
we have

(5.14)

∣∣∣∣∣
dd

2

dωd
2

1

T (ω)

∣∣∣∣∣ ≥ d2!|k1|d
2
(
1− ε

1
2C1|k1|−1

)
≥ 1

2
d2!|k1|d

2

.

Thus, from (5.14) and Lemma 6.3, we get

MeasR∗
k(n) ≤ d2(d+ 1)2

( γn
|k|τ1

) 1
d2

(diamΠ0)
r−1 ≤ 1

n2

Rγ
1
d2

|k|r+1
.

For the MeasR∗∗
k (n), we also have

MeasR∗∗
k (n) ≤ 1

n2

Rγ
1
d2

|k|r+1
.

It means

MeasRk(n) ≤MeasR∗
k(n) +MeasR∗∗

k (n) ≤ 2

n2

Rγ
1
d2

|k|r+1
.

�

We can find the nest sequence of closed sets

Ω0 = Π0 ⊃ Π1 ⊃ · · · ⊃ Πn ⊃ · · ·

is defined inductively. Moreover, we have the following lemma.

Lemma 5.3. Let Π∞ =
⋂∞
n=0 Πm. Then the Lebesgue measure of Π∞ satisfies

MeasΠ∞ = (MeasΠ0)(1−O(γ
1
d2 )).
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6. Appendix

Lemma 6.1. For δ > 0 and ν > 0, the following inequality holds true:

∑

k∈ZN

|k|νe−2|k|δ ≤
(ν
e

)ν (1 + e)N

δν+N
.

This lemma can be found in [1].
The following lemma can be found in many books on matrix theory; for

example in [10].

Lemma 6.2. Let A,B and C be l× l, m×m and l×m matrixes, respectively;
and let X be an l×m unknown matrix. Then the matrix equation

AX +XB = C

is solvable if and only if the vector equation

(Em ⊗A+B⊤ ⊗ El)X
′ = C′

is solvable, where X ′ = (X⊤
1 , . . . , X

⊤
m)⊤, C′ = (C⊤

1 , . . . , C
⊤
m)⊤ if we write X =

(X1, . . . , Xm) and C = (C1, . . . , Cm). Moreover,

||X || ≤
∣∣∣
∣∣∣(Em ⊗A+B⊤ ⊗ El)

−1
∣∣∣
∣∣∣||C||

if the inverse exists.

Lemma 6.3 ([15], Lemma 4.1). Let ∆ be an interval in R1 and ∆ its closure.

Suppose that ψ : ∆ → C is k times continuously differentiable. Let ∆j = {x ∈
∆ : |ψ(x)| ≤ j}, j > 0. If, for some constant ν > 0, |d

kψ(x)
dxk | ≥ ν for any x ∈ ∆,

then MeasIj ≤ cj
1
k where c = 2(2 + 3 + · · ·+ k + ν−1).

Lemma 6.4 ([9], Lemma 2). Let h : U ⊂ Rd → Rd be a function of class C2 on

a ball Bκ(0) that satisfies h(0) = 0, Dxh(0) = 0, and ||Dxxh(x)|| ≤ K, where
x ∈ Bκ(0). Then ||h(x)|| ≤ K

2 ||x||2 and ||Dxh(x)|| ≤ K||x||.
Lemma 6.5 ([9], Lemma 10). Let {an} be a sequence of positive real numbers

that satisfies an ∈ (0, 1],
∏∞
n=0 an = a ∈ (0, 1]. Let {bn} be another sequence

of positive real numbers that satisfies
∑∞

n=0 bn = b < +∞. We define a new

sequence {κn} is κn+1 = anκn−bn. Then κn → κ∞, n→ ∞, and κ∞ ≥ aκ0−b.
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