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A NOTE ON QUASI-PERIODIC PERTURBATIONS OF
ELLIPTIC EQUILIBRIUM POINTS

Houyu Zuao

ABSTRACT. The system
&= (A+eQ(te))z +eg(t,e) + h(x, L, €),

where A is elliptic whose eigenvalues are not necessarily simple and h
is (9(12). It is proved that, under suitable hypothesis of analyticity, for
most values of the frequencies, the system is reducible.

1. Introduction and main result
Before stating our questions, we first give some definitions and notations.

Definition 1.1. A function f : R — R is called real analytic quasi-periodic
with the frequencies w = (w1, we,...,w,) if it can be represented as a Fourier
series of the type

(L.1) FE) =3 freitbe,
k

where k = (k1,..., k), (k,w) = > kjw; # 0 if k # 0, the coefficients fj, decay
exponentially with |k| = k1| + - + |kr|.

We denote by Q(w) the set of real analytic quasi-periodic functions with the
frequencies w.
From the above definition, we see that the function F : ¢ = (¢4,...,9,) €

R" — R defined by
F) =) fre®?
k

is 2m-periodic in each variable and bounded in a complex neighborhood of
R" : |Im¥;| < p for some p > 0. This function is called a shell function of f.
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Definition 1.2. Let v(t) be a quasi-periodic function with rationally indepen-
dent frequencies wy,...,w, and shell function V, satisfying v(t) = V(wit, ...,

wyt). Then the limit
1 (T
lim — t)dt
im T/o v(t)

T—o0
is called the time average of v, coincides with the space average

1
Vo = W /T V(ﬂ)dﬂ

and we denote the common value by 7 as well.

Definition 1.3. Let Q,(w) C Q(w) be the set of real analytic functions f such
that the corresponding shell functions F' are bounded on the subset ©(p) =
{(01,...,9) € C": Im¥;| < p}, with the sup-norm

Z Freit?)
k

By Cauchy’s formula, it follows that

(1.2) [ ful < I fllpe™"™7 and  |foly < (o =) If N

for f € Q,(w) and 0 < p' < p.

Since N. N. Bogoljubov et al. [1] in 1960’s proved reducibility of non-autono-
mous finite-dimensional linear systems to constant coefficient equations by
KAM-technique, establishing the reducibility of finite-dimensional systems by
means of the KAM tools has become an active field of research. Such results are
also included in [11]. In this directions, we refer [2]-[16] and references therein
for a detailed description. In particular, A. Jorba and C. Simé [9] investigated
the reducibility of the quasi-periodic ordinary differential equation

(1.3) &= (A+eQ(t,e))x +eg(t,e)+ h(z,t,¢),

where A is an elliptic constant square matrix with order d (that is, all the
eigenvalues are purely imaginary and nonzero), @ is a square matrix with or-
der d, h is a vector function of second order in x, and @), g, h are quasi-periodic
in time ¢ with frequency vector w = (wi,ws...,w;). Such equation (1.3) is
an autonomous differential equation under quasi-periodic time-dependent per-
turbations near an elliptic equilibrium point. More precisely, under suitable
conditions of analyticity, nonresonance and nondegeneracy with respect to ¢,
A. Jorba and C. Sim6 [9] proved that the system (1.3) is reducible for € in some
Cantorian set £ C (0,&9) with g¢ sufficiently small, provided that

(1) the eigenvalues Ay, ..., Ag of A are different;

(2) the eigenvalues A\{(g),...,\(c) of A = A+ eQ(e) + D,h(z(t,e),t,¢)
satisfy

1f1lp = = sup |F(V)|.

Y€O(p)

sup
YEO(p)

)
(1.4) 0< 25|€1 — Egl < |)\?(51) - )\?(51) - )\?(52) + )\(])(Eg)l < §|51 - 52|,
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5
(1.5) 0<25|€1—52| < |)\2(51)—)\2(€2)| < §|51—52|

for all 4, 7, and k satisfying 1 <i < j < dand 1 < k < d, and provided that |e1]
and |es| are less than some small value 9. Here z(t) is the unique analytical
quasi-periodic solution of & = Az + eg(t, €).

Naturally, we should ask that whether or not (1.3) is reducible when condi-
tions (1) or (2) is not satisfied. In this paper, we will give an answer to this
question.

Throughout this paper, we always assume that the following hypothesis is
satisfied:

(H) Q(t),9(t), and h(t) are in Q,(w) and w € D, :

gl

> R
k|7

D,: = {w eER": ‘W—l(k,w)Ed — A,

’|\/ —1(/€,w)Ed2 —FE;® A+ AT X Edle

Y
> ==,
W}

where k € Z"\ {0}, 1 < 4,5 <d,v> 0,7 >r—1and |- |. denotes the
determinant of a matrix.

If x € R™, we denote by ||z|| the sup norm of . If A is a matrix, ||A|| denotes
the corresponding sup-norm, and for a matrix-valued function Q(¢), define

1QII” = sup[|Q()I,
teU

where || - || is the sup-norm of the matrix.
In the present paper, we will follow the techniques developed in [9] and [16]
to prove the following result.

Theorem 1.1. Assume that (H) is satisfied. Let Qo C R" be a compact set
with positive Lebesgue measure. Consider the system (1.3) and assume that

(A1) det A # 0, and Q(t,¢), g(t,€) and h(z,t,e) are in Q,(w) with w € Q.

(A2) h(z,t,e) is analytic with respect to x on the ball B.(0) centered in the
origin with radius k, h(0,t,€) = 0 and ||Dygh(z,t,e)|| < K with ||z|| < k and K
positive constant. Then for a sufficiently small positive constant -y, there exist
a subset Q C Qo with Meas(p \ Q) =Meas()(1 — O('yd%)) and a sufficiently
small constant €(p,y) > 0 such that for any € € (0,¢€), there is an analytic
quasi-periodic transformation y = U (t)x with the basic frequencies w such that
the system (1.3) is transformed into

y = Aoo (€>y + heo (y, t, €>a
where Ao is a constant matriz and hoo(y,t,€) is of second order in y.

Corollary 1. Under the hypothesis of Theorem 1.1, for any € € (0,¢), (1.3)
has a quasi-periodic solution x(t) with basic frequencies w such that

lim ||| = 0.
e€E
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2. Preliminary lemmas

Lemma 2.1. Let us consider the equation
(2.1) & = Az +eg(t),

where A is a d x d matriz with det A # 0 and g(t) € Qp, (w). If 0 < p2 < p1
and w € D, then the equation (2.1) has a unique quasi-periodic solution x(t) €

Qp, (w) satisfying
2]l p, < eLallgllp,

where Ly = ||A™1| + %(%) Lo

( P1 ;Pz )T+7‘ °
Proof. We write

=D eV IR () = D gpeV TR,
keZr kezr

where zj, and g, are vectors. From & = Ax + £g(t) we get
(2.2) (\/fl(k,w)Ed - A) Tk = £,

where F,; is a d dimension unit matrix.
When k = 0, because det A # 0, we get

2ol < el Ao |90l < ell AT 1o llgllps -

When k # 0, by (H) and (1.2), the equation (2.2) is solvable for w € D,
and

@3)  loul <o (VIR = 4) vl <20l

Further, we have

| - 1—pP2
lollps < <l ullgllp, + 3 e gl e ormre

k#0
_ C/m\™ (1+e)"
< E[HA i+ —(—) m}“ [lps
el (555)
(2.4) = eLallgllp,
where the second inequality follows from Lemma 6.1. O

Lemma 2.2. Consider the equation
(2.5) P=AP - PA+Q",

where A is a d x d matriz and Q*(t) = > y<m QreV~1h)t ¢ Q, (w). Let
0 < p2 < p1 and w € D,. Then the equation (2.5) has a unique quasi-periodic
solution P(t) € Q,,(w) satisfying

1Pllp: < Lall@llp,
where Q@ =3 yezr QreV =1kt Ty — %(%) (91(1-/";26;:#»7"
2
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Proof. Let
Py = Y P/
0<|k|<M

Then it is easy to see that
(2.6) (V—l(kz,w)Ed - A)Pk + PoA = Qp.
By (H), (1.2) and Lemma 6.1, we have
—1
P < | (VI @) B~ Bam A+ AT @ Ba) |l
p2
L —p1lk]
(2.7) < C—I1Qllpe
v
and

L -
[Pl < S0 CE[|Ql]py el er2lH

o< |k|<M
k| N
<D CllQlp e e
kezr 7
C/m\™ (1+e)
2.8 < —(-) ————— .
(2.8) <=(7) ey 19l _

Lemma 2.3. Let us consider

(2.9) &= (A+eQ(t))x +eg(t) + h(z,t),

where Q(t), g(t), h(z,t) € Qp, (w) and 0 < pa < p1. Also, we assume that h(z,t)
is analytic with respect to x on the ball B.(0) and satisfies || Dy zh(z,t)||, <

K,Vz € B.(0). Then for a solution x(t) € Q,,(w) of the equation (2.1), the
change of variables x = y + x(t) transforms the initial equation (2.9) into

§ = (A+eQ1(t))y +e1g1(t) + ha(y, 1),

T and @1 has zero average and the following bounds hold for

where €1 = &!
weD,:

1. ||@1||p2 < 2/|Q||p, + 2K L1l|g||p,, where Ly was defined in Lemma 2.1.
KLE(lgllp,)? -

2 [lgallps < (FEUHl L1111 gl )2

3 [[A]] < Al + e([|Qllpy + K Lallgllpr)-

4. || Dyyhal|,, < K.

5. zllpy < eLallgllp,-

Here y € B, (0), k1 = Kk — ||z]|5,, and € is small enough.
Proof. Let x be such that £ = Az + £g. In Lemma 2.1, we have

zllp, < eLallgllp:-



1228 HOUYU ZHAO

By the change of variables x = y + z(t), we can obtain

U= (A+eQ1(t))y +ec191(t) + hi(y,t),

where Q1 = Q + 1D.h(z(t),t), 1 = ==h(z(t),t) + 2Qx(t) (¢ # 0), and
hi(y,t) = h(z(t) + y,t) — h(z(t),t) — Dyh(z(t),t)y. Like [9], the terms of this
equation must be bounded. First, by Lemma 6.4, we have

1
1@1llp. < 1@l + ZKllzllpe < 1Qllpy + K Lullgllp,-

Then we bound ||g1]|,,, also from Lemma 6.4, we get

K 1 1
lg1llps < 5z (lellon)? + 1@l 2l
KL (lgll,,)? .
< (22 4 Ll @lulgll )t

The third one is Dyyhi(y, 1),
[[Dyyhallp, = [[Daah(z(t) +y,1)]| < K.

So we must require that y € By, (0), where k1 = k — ||z]|,,. We define Q1(t) =
Q1+ Q1(t), A= A+ £Q;, we obtain

g =(A+eQ1(t))y +e191(t) + ha(y, ).

At last,
141l < 1Al + €l|Q1 1],

< IA]] + ll@allp

<[l All+e(l|@Qllpr + K Lallgllp.),
and B

1Q1llp < 2/[@ullpn < 2(1|@11p: + K Lallgllpy)- O

Lemma 2.4. Let us consider
(2.10) z=(A4+eQ(t)x +e19(t) + h(z,t),

where Q(t),g(t), h(z,t) € Qp, (w),0 < p2 < p1 and Q has zero average. Also,
we assume that h(z,t) is analytic with respect to x on the ball B,,(0) and sat-
isfies || Daah(z,t)||9* < K,V € Bk(0). Then the change of variables x =
(E+eP(t))y with P(t) € Qp,(w) transforms the initial equation (2.10) into

g=A+e1Qi()y +e101(t) + ha(y, 1),
where @1 has zero average, E is the identity d X d matriz and the following
bounds hold for w € D, :
A — o (Lo+1Plpy)
L 1@l < 26525122 Q) , where |[Plly, < Lal|Qllyy and Ly was
defined in Lemma 2.2.
2. [g1llp, < mﬂgﬂm-

3. |[A|| < ||A|| + e2Eetllllea) o

1_EHP||P2
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(el | Plpy)?
4 [Dyyhallp, < K 3=pyi2--

Here y € By, (0), where ko = and € s small enough.

1+el[Pllpy
Proof. By the change of variables © = (E 4 ¢P)y, we can obtain

—1 .
Y= (E +5P) (A +e(Q*+ AP —P)+ (eQ™ + EQQP))y +e191(t) + hi(y,t),

where

Q=0Q"+Q™,
Q)= Y QeI
0<|k|<M
Q)= Y QueY T
|k|>M

g1 =(E+¢eP)"'g, and
hi(y,t) = (B +eP) 'h((E + eP)y, t).

We would like to have

(E4eP) Y (A+e(Q*+AP - P)) = A,
this implies that .

P =AP— PA+ Q"
From Lemma 2.2 we have
1Pl < Lal@llp -

We obtain the equation

J=(A+e1Q1(t)y +e19:(t) + ha(y,t),
where £1Q1 = (E + eP)~}(eQ** +£2QP).

Now we bounded the terms of this equation. In fact

1Q Nl < D [1Qullpp "

|k|>M

<11Qllp, Z e~ (P1—p2)|k]|

|k|>M

—11Qll,y 3 et Ikhan

|k|>0
<¢l|Ql], Z e~ (P1=p2)IK|
|k|>0
(2.11) < eLalQllp
then

ller@1llp, ENQ™ 5z + 21Q11p2 | Pl 2)

1
S e
L —el[P|],,
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2 (Ly + [ Pllp2)

(2.12) <e Q1.
1 —¢|[P]], g
and
(L5 +IP]]p,)
@1, <&'= Qs »
g 1 —¢l|P|],, g
91]1s < ————Ilgll
g1 p2 = 1_5||P||p2 g P19

K (A +ellPll,.)*
< (1 +ePll,)* < K =,
1 —¢||Pl]p, . 1 —¢||Pl]p,

in this we require y € By, (0), where ko =

||Dyyh1||p2

K .
——— and ¢ is small enough.
1+el[Pllpy g

Let Q1(t) = Q, + Q1(t),A = A+ £,Q,. Then we obtain

§=([A+e1Q1(t)y +e191(t) + ha(y, t).

At last,
— (L + [[Pllp2)
141l < 1Al +e1l|@ullpn < [JA]] + €2 1@l lp,
’ 1 —el|Pl],, !
> — (L +Pllps)
<92 <92 1 L( 2 P2 )
||Q1||P2 = ||Q1||P2 > 28 1_5||P||p2 ||Q||P1 |

3. Iterative lemma

We will invoke the KAM iterative technique to prove Theorem 1.1. To that
end, for given € > 0, p > 0 and r > 0, we first introduce some iterative
sequences.

(eo=¢, en=el" " =1 n=12.,

. 14924 ... —2
(i) po=p. pn=po— BT =012,
1

(iil) gn = €%, n = 0,1,2,..., where d is the dimensional number of
system (1.3);

(iv) O, = O(pn) = {9 = (V1,92,...,9,) € C"/27Z" : [Im¥| < pp}, n =
0,1,2,...;

oty gt st g,
(V) Un:pO_pg_O( T2 )a anﬁ%-
Let Il = Qp and define the sets
Ri(n) = {w T, : ’|\/—1(k,w)Edz CE;® A, + AT @ Egl.| < IIZIZI }

R (n) = {w €Tl : ‘|\/71(k:,w)Ed ~ Anle

T }
< )
||

(3.1) Ri(n) = Ri(n) | Ri*(n),
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where v, = —L> and 71 = (r + 1)d? and

n2d2
(3.2) O, =T\ |J Rkn),
0<|k|<M,
where M,, = %. Then II,, is the sequence of compact closed subsets of
R? with

Qo=Ilp DIy---DII,, D -~

and from Lemma 5.2, we have

and

Meas U Ri(n) < Z MeasRy(n)

0<|k|< My 0#£keZ"
2 1 1
< ER’WZ Z [+
0#kEL"
N | 2m2r 4
SFRV(R Zm W:WRVCﬂ’
m=1

where we use that #{k € Z"/|k| = m} < 2rm" 1.
Then, we can prove that

Measll,, = Meas (Ho — U U Rk@))

=1 0<|k|<M;
272 1\ o
> (1 — TTR(Zl Z_—Q)Vfﬂ)MeasHO,
and
1
MeasIlo, = (1 — O(vya?)) MeasIy.

We let that O,, and U, are the complex ¢,-neighborhood and ¢,-neighbor-
hood of II,, respectively, and construct iteratively a series of equations of the
form

(E)p En = (An(w) + £nQn(t,w))Tn + engn(t,w) + hn(Tn, t,w),

and where the following conditions are satisfied:
(H1),, Qn(t,w) and gy (t,w) are analytic in ©,, x O,,, and

(3-3) max{||Qn(t, w)[|%" ", [|gn|| O ¥} < 1.

(H2),, hyp(zn,t,€) is analytic with respect to z, on the ball B, (0), where
Ky is a sequence with kg = k and lim,, o K, > 0.
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Lemma 3.1 (Iterative lemma). Assume that (H1), and (H2), are satisfied.
Then for € small sufficiently there is a transformation

(3.4) D, = (E+enPu(t,w))Tnir + 2n,

where x,, satisfies Ty (t) = Apxn(t)+engn(t) and P, (t,w) is analytic in ©, x Oy,
and quasi-periodic with frequency w, such that (E),, is changed into (E)p4+1 and
(H1)p41 and (H2),41 are fulfilled.

Proof. Now we apply the change of variables x,,(t) = yn(t) + zn(t), where z,,
satisfies @y, (t) = Anxn(t) + €ngn(t), and Lemma 2.3 to (E),. Then we get

(35) Un = (A\n(w> + En@n(tvw))zn + 5n+1§n(ta w) + hn(zna t,w),
where the analyticity strip reduce to o,, and

Ap = An+€,Q,,(t) + Dphn(za(t), 1),

_ 1 -
Qnlt) = Qut) = @u(®) + — (Palin(an(t),t) ~ Dehnl@a (D)D)
Gn(t) = e, Ty (2 (1)) + " Qu(t)an (1),
R (8) = T (@ () + Y, 1) = h(@n (), 1) = Dohon(2a (t), D)y,
where we omit the dependence on w to simplify the notation.
Then we apply the change of variables y,(t) = (E + €, P (t))Tn+1(t) and
Lemma 2.4 to (3.5), we have
(3.6)
Int1 = (Ans1(W) + En1@nir (B, w))Tnp1 + Envignsr(t,w) + hngr (Tngr, £ w).

Now the analyticity strip has been reduced to py41, and
Ans1 = A+ B+ aPa) (20 (1) + 220, (HPa(t))
= A, +,Q, () + Dahy (20 (1), 1),
Quia(t) = ey (B -+ 2nPu(®) ™ (eaQ (1) + 2Qn () Pa (1))
— B+ enPa0) T (2Qi (1) + 20, (O Pu(t))
= et (B4 enPa(t) 7 (n Q3 (1) + 22Qn (D) Palt))
= £, CFE + £ Pa(t) ™ (2Qu" (1) + Dby (za(8).1))
+ e, (E+ e, Pa(t) !

<5nQn(t) - En@n(t) + Dyhy (20 (t),t) — Dyhn(za(t), t)) Py(t),

gn-i-l(t) = (E + EnPn(t))_lan(t)
= (E+4 e, Py(t))  hn(z,,

(1), )en, M) (B +en Po(t) ™' Qu(t)zn(t)ey ",
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g1 (t) = (B + e Po() " (B + e3P (t))ns1 (), )
= (B + aPa(®) " (R (2a(t) + (B + enPa(t)@ni1, 1)

= h(2a(t).£) = Dl (2a(t). O)(E + 20 Pa(t)nsn ).

where a(t) @—;‘l*(t) = 0. So, by the change of variables x,(t) = (E +
enPn(t))Tn41(t) + 2, (t), Lemma 2.3 and Lemma 2.4, we can transform (E),,
to (E)n+1. O

In the following, we will prove the terms of (E),1 is bounded by the terms of
(E)p, and we will use Ly ,,, Lo ,, denote the values of Ly, Ly which is introduced
in Lemmas 2.1 and 2.2, also L5, in place of Lj. Moreover, as in [9], we use
the symbol K, to be the bound of the second derivative of h,, and by the same
method in [9], we can find {K,,} is convergent, we omit the proof.

First we note that a fact &, || P,[|®+*©+1 < 1 which will be proved in the
below, then for €, small enough, we will find

1Quit][S#HXO S 1, g [oOmr < 1.
In fact, from Lemmas 2.3 and 2.4, we have
A )
T eall P[0
< ey (L + Lo [@n][ 97X Um)[|Q,]| O < Un
<8L1n(1+ KpL1n)(3+ 2K, L1 )0 ",

n

Qg |[ Ot Ontt < 2e1 1@

since Ly, > max{Lan, L5 ,} and
Q][4 = 2(||Qul[ O + KLl ] %X ™),

and K,, < (%)”KO is the bound of the second derivative of h,,. We can assume
v <1, then Ly, > 1, there is

1Quaa || Omtr < 2413 (14 Ko)?e, ™t < 1.

From Lemmas 2.3 and 2.4 now bound the norm of g, as

g1 ]| 1 Crst < 2] |G, || OL7m) ¥V

1—¢
n

< (KnZR allgnll® O+ 2L [ Qul[ " lgal X )<
< (Kn+2)L7 e <1
Thus, if € is a sufficiently small constant, we have
Jim_eal[@ul[®7On = Tim 2nlga]|* " = 0.

Now we bound ||P,||®+*On+1. From Lemmas 2.3 and 2.4, we have

||Pn||@n+1><(9n+1 < 2L2,n(||Qn||@"XO" +KnL1,n||gn||9"XO")
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9
< 4(§>nLl,nL2,nKO
and 1im,, o0 €| P ||®71XCn+1 = 0, for € small enough, thus we do not mind
to take ,||P,[|©n+1*On+1 < 1. The bound of ||z, |/ *Un is

ll2a | €™ XU < €L n]gnl |9 O < €L -

Now we will show that if € is small enough, the limit radius &, of the ball
where h,, analytic with respect to x is positive. Then from Lemma 2.4 and
Lemma 2.3 we have

. 1 zal [0 <0
T T T e [PaPrr O T T g [[Py [ One
like [9] we define a, = L by, = lwn ||t ) T and

Lep || Py [Fn 41X Ont? Ltep || Py[Fn 41X Ot
. . . o0 o0
when ¢ is small enough, by Lemma 6.5 it is easy to find [[,~ ,a, and >~ (b,
are convergent, SO Koo, > akg — b > 0.
Now let us bound ||A,|| as

(L, + [ Paf[Pr70ns1)
n 1_5n||Pn||@"+1XO"+1
< |Aqn]| +€n(||Qn||(~)n><On +KnL1,n||gn||@"XO")

s (L o [|Pa[Or120)
En 1— 5n||P’n||®n+1 XOpt1

9
< JlAnll + e (14 (5)" KoL)

| Ansall < [|Anll + & 1Qul[ Ot

1Qul [t x0%

9 9
42 (1+ ()" KoL) (L, + 4(5)" Lrnlan o)
< || Anll + 6n,

where ¢, < ¢,C’ for a suitable C’, when ¢ is small enough, we have > ° |,
convergent, so we can ensure that the matrices A,, — B, when n — oco.

4. Proof of Theorem 1.1

We remark that the system (1.3) satisfies (E,), (H1), and (H2), with v = 0,
the iterative procedure in Lemma 3.1 can run repeatedly. So, there exists a
sequence of transformation x,, = (E + €, P, (t,w))®nq1 + 2n,n = 0,1,2,...,
such that P, (t) are analytic in the domains 0,41 X Op41. Let

O X O = ﬁ@nx(?n.
n=1

Then, all the P,,n = 1,2,..., are well defined in the domain O, x O, and
we have

Tnt+1 = @_1(1?)1'” = (I)El(t) °© (I);il(t)xn—l
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=0 () o®, L (1) o0 By (t)ao,
ie.,
Tpy1 = (B + EnPn)_l.Tn —(E+ EnPn)_l.T_n
= (E+enPy)to ((E Fen1Po1)  rn 1

—(E+ En_an_l)flh) —(E+e,Py) 'y

= (E+e,P,) Yo (E4en1Po1) tap
—(E+enPy) o (E+en1Poy) oy
—(E+ EnPn)_lx_n

= (E + EnPn)_l o (E + En_lpn_l)_l o---0 (E + Eopo)_1$0
- Z(E +enPy) oo (BE+eP)
i=0

where z; is a solution of the equation as in Lemma 2.1.
We set
U, (t) =0, (t) o @t (H) o 0 By (1)
Note that

||$n||6wXU°° < ||zn||6(gn)XU" <éenlip, lim 5n||Pn||@n+l><On+1 =0,
— — n— oo

then

W41 (t) = Wi (8[| F=* V=

1 Ooo XUso
= |[orti ) 0 wa(t) - w0

Ooo XUso
< [lorh@ Bl T et

S (||(E+€n+1pn+1)71 — E||600><Uoo

O X

Uso
+ H(EJrEn+1Pn+1)71$n+1H )||‘I’n(t)||@°°XU°°

Ent1||Ppy1]|On+2xUnta ent1L1nt1 Ooo X Uso
< ( B ——— ) W)l
1 — eny1||Prag]|On+2xUn+z 1 — epy1||Pay1]|Ont2xUn+z

< 2ental|Pagal|On2X 02 4 221 L )| [ W (8)]| OV,

it is easy to find that
[0 (1)]| 97> < 400,
1

so {U,(t)} is convergent on O o X Use, Where we use ep,41|| Pog||©n27%On+2 < 1
as in Lemma 3.1. We see that ¥ (¢) = lim,, oo U, (t) is well defined, let

y=Y(t)x.
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Then, the transformation y = ¥(¢)z change (1.3) into
y = Aoo (E)y + heo (y, t, 5)'
This completes the proof of Theorem 1.1.

5. Measure lemma of the allowed frequencies set

In this section, we bound the measure of the resonances and in the proving,
C is positive constants.

Lemma 5.1. Lett =7 +d* —1 and
(5.1) G*(w) = vV—=1(k,w)Eg2 — B4 ® A, + Al @ Ey,

(5.2) G (w) = vV_1(k,w)Eq — Ap(w).

Then, for w € O, and 0 < |k| < M, the inverse of G*(w) and G**(w) exist,
moreover, they are analytic in the domain O,, with

k/, T k/, T
(5.3 6w < @ <o
Tn Tn
respectively.
Proof. This proof like the Lemma 3.1 in [16], we omit it. O

Lemma 5.2. Let R = d*(d + 1)?(diamIly)"~1. Then the Lebesgue measure of
Ri(n) satisfies

(5.4) MeasRy(n) <

Proof. From Lemma 2.4 and Lemma 2.3 we have
(5.5) Apii(w) = Ap(w) +eaQy(w) + Dah(z, (t,w),1).

1
First, we know that ¢, = €%, let q1.s = 3¢5 + §0s11,02,s = 150 + T50s+1,
and O;, are the g¢; s-neighborhood of II; respectively for ¢ = 1,2, more-
over, pi,s = %ps + %p5+17p275 = %ps + %psﬂ are the size of the analytic-
ity domain in the angular variables. Obviously, Os41 C O1,s C Oz, C Os
and dist(00s,005) > dist(002,5,00,) = dist(001,5,002,) > ﬁqs, and
Ps+1 < p1,s < p2,s < ps. Recall that ||Qs] ©sx0s < 1 and ||g,]|®*9 < 1,
then for 1 <1< d? and 0 < s <n,

(5.6)

2

_ 4t 24! 1
esl|0LQ(w)[|91 X1 < eg = ||Q, (W) X9 < s ||Qs(w)]| %P < e,
S

S

N o4l
10, Dah(ay(t,w), £)]| 1 Oe < S |[Dyph(z, (8, w), £)]| O % 2
q

S



A NOTE ON QUASI-PERIODIC PERTURBATIONS 1237

IN

24!
_l||Dmh(£s(ta W), t)| |®2v5 XOZ,S
s

24!
.
24t~ 1
ESq_leLl,sngs(w)H@SXOS <ed.

S

IN

K|z, (t,w)|| 92X 0>

(5.7)

IN

Now from (5.6) and (5.7), the norm boundedness of every terms in (5.5) and
recursiveness, for a sufficiently small £, we have

0L Ania )[04 7Or < e,
Let B(w) = —E4 ® Ap(w) + A} (w) ® Eq = (b;;). Then
L
obviously, for 1 <1 < d? and w € O1n—1,
(5 0, b < 0L B(w)[[On-1xCmr < ek,
Set T(w) = [v/—1(k,w)Eg + B(w)|e. Then
69 T@=vT E)T Y @k’

1<p<d?-1
where
Xy(w): Z O—j1~~~jyb1j1"'bvjy and Ojy-j, € {71,4’1,7\/71,4’\/71}.
1<5:<d?

For w € Ol,n—l; 1<I< d2, by (58),

dl dl1 dl,,
—— (b1jy - byj, )| < bij, 15,
dw! 11+»Z+ll,—l(dwl11 ) (d b )
<t Y
y4eetl, =l
(5.10) < 2lez,
and
d! d? )
11 — < 2les,
6.11) o) < (1) )2

Now, without loss of generality, we can assume that |k| = |ki|+- - -+ |kr| < r|k1].
Then, for every w € O1 -1,

e >
— > x@lkw)
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>

1<v<d?-1

de

d2
dw§

(0 (@) ) )

a2\ | d d® -1 2
< — Yy - k, —v
- 1<V§2—1 1<lz<d2 < ! > dw:llx (W) dwfz_l( W)
A (AN 11 a2 l—v 2
< > 2 )0 )R )l
1<v<d2—11<1<d2
(5.12) < 30|k |,

where (' is some constant which depends only on d,r and on the maximum of
|w] in IIy. Obviously,
v

(1) () = |,
1

moreover, in O} |, for & small enough so that Cje? < 1, by (5.12) and (5.13)
we have

d2

d : 1 .
(5.14) ‘d T(w)| > d?l|ky|? (1 fgécluﬁrl) > Sd k|,

d2
Wi

Thus, from (5.14) and Lemma 6.3, we get

T
||

MeasRj(n) < d*(d + 1)2( )d_z(diamﬂo)rfl < =

For the MeasR;*(n), we also have

MeasR;*(n) <

It means

MeasRi(n) < MeasR;(n) + MeasRi"(n) <

We can find the nest sequence of closed sets
Q=D D>---DII, D
is defined inductively. Moreover, we have the following lemma.

Lemma 5.3. LetlIl = ﬂflo:o II,,. Then the Lebesgue measure of Il satisfies

Measlly, = (Measlly)(1 — O(yd%))
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6. Appendix

Lemma 6.1. For é >0 and v > 0, the following inequality holds true:

> e < () 04"

e 51/+N
keZN

This lemma can be found in [1].
The following lemma can be found in many books on matrix theory; for
example in [10].

Lemma 6.2. Let A, B and C bel x 1, m x m and |l X m matrizes, respectively;
and let X be an I x m unknown matriz. Then the matriz equation

AX+XB=C
is solvable if and only if the vector equation
(Em@A+B' @ E)X' =C'
is solvable, where X' = (X{,..., X,]))T,C" = (C],...,CI)T if we write X =
(X1,...,Xm) and C = (C4,...,Cy). Moreover,
IXI1 < ||(Bm @4+ BT @ B)7|[C]]
if the inverse exists.

Lemma 6.3 ([15], Lemma 4.1). Let A be an interval in R and A its closure.
Suppose that ¢ : A — C is k times continuously differentiable. Let A; = {z €

A Jp(x)| < 5},7 > 0. If, for some constant v > 0, |%| > v for any x € A,
then Measl; < cjk where c=22+3+ -+ k+v1).

Lemma 6.4 ([9], Lemma 2). Let h: U C R? — R? be a function of class C* on
a ball B (0) that satisfies h(0) = 0, D,h(0) = 0, and ||Dyh(x)|| < K, where
@ € By(0). Then ||h(2)|| < % ||=[]* and [|Doh(@)]] < K|z

Lemma 6.5 ([9], Lemma 10). Let {an} be a sequence of positive real numbers
that satisfies an, € (0,1], [[,2yan = a € (0,1]. Let {by} be another sequence
of positive real numbers that satisfies ZZOZO b, = b < +00. We define a new
sequence {Kkn} 18 Knt1 = ankn—by. Then K, — Koo, B — 00, and Koo > ako—b.

Acknowledgements. The author is very grateful to the Professor Jianguo
Si (School of mathematics, Shandong University in China) for valuable and
inspiring suggestions.
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