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ON UNIVERSAL COVERINGS OF LIE TORI

Valiollah Khalili

Abstract. In this paper we give an introduction to the theory of uni-
versal central extensions of perfect Lie algebras. In particular, we will
provide a model for the universal coverings of Lie tori and we show that
automorphisms and derivations lift to the universal coverings. We also
prove that the universal covering of a Lie Λ-torus of type ∆ is again a Lie
Λ-torus of type ∆.

0. Introduction

Central extensions play an important role in the theory of Lie algebras.
Universal central extension of Lie algebras over rings were described in [23, §1],
later references on universal central extensions are [12, §1], [15, 1.9], [24, 7.9] or
[21]. Central extensions in the category of certain topological Lie algebras are
studied in [17]. Garland studies universal central extensions of Lie algebras over
fields [12, §1]. In particular, he constructs a model of universal central extension
of a perfect Lie algebra, using the universal 2-cocycle, which is different from
the Van der Kallen,s model (see [23, §1]). Our construction for universal central
extensions of Lie tori is essentially the Van der Kallen’s model.

Lie tori play a critical role in the theory of extended affine Lie algebras which
are natural generalization of finite dimensional simple Lie algebras and affine
Lie algebras. Yoshii and Neher were interested in Lie tori primarily because
of the connection between Lie tori and extended affine Lie algebras ([26] and
[19]). The centerless core of an extended affine Lie algebra is a centerless of
Lie torus and conversely any centerless Lie torus is the centerless core of an
extended affine Lie algebra [26, Theorem 7.3]. Extended affine Lie algebras
are defined axiomatically by Alison, Azam, Berman, Gao and Pianzola in [1].
The various classes of these Lie algebras have been investigated in many papers
(see [4, 6, 13, 14, 20, 25, 27] and [16]). Lie tori as well as extended affine Lie
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algebras are also defined axiomatically, which are the certain root graded Lie
algebras.

The universal central extensions of root-graded Lie algebras are determined
in [2], [3] and [8]. Recently, in [28] and [7] the authors have given a finite
presentation for the universal covering of the centerless core of a Lie torus of
type X , X 6= Al, Cl, BCl. Namely, by using the recognition and structural
theorem(s) for root graded Lie algebras and their universal coverings, they were
able to select a finite set of generators and deduce a certain set of relations
among them for presentation the universal covering of a Lie torus of type X ,
X 6= Al, Cl, BCl.

One of our aims in this note is to give natural construction for universal
covering of Lie tori, with emphasis on the general part of the theory, rather
than on special type of Lie tori. More precisely, our construction uses the model
of the universal central extension of perfect Lie algebras by Van der Kallen’s
method [23, §1]. The purpose of this note is to give an information about the
structure for the universal covering of a Lie Λ-torus of type ∆, where Λ is an
abelian group and ∆ is an irreducible finite root system.

To close this introduction, we briefly outline the contents of the paper. In
Section 1, we recall the definition of Lie Λ-torus of type ∆ and some facts
that we will need in the sequel. We also give an introduction to the theory of
universal central extension for perfect Lie algebras and record some properties
of it. In Section 2, we provide a construction for universal covering of Lie
tori, by using Van der Kallen’s model . We finish this section by proving that
automorphisms and derivations of Lie tori lift to the universal central extension.
Section 3 contains the structure of the universal covering of a Lie Λ-torus of
type ∆. More precisely we show that the universal covering of a Lie Λ-torus of
type ∆ satisfies in all axioms of Lie tori and is again a Lie Λ-torus of type ∆.

1. Basic definitions and terminology

Throughout this paper we will assume that Λ is an abelian additive group
and F is a field of characteristic zero, unless otherwise mentioned, all vector
spaces and all algebras are considered over F.

1.1. Lie tori

First we introduce a notion of root graded Lie algebra. Specially, we consider
certain root graded Lie algebra called Lie torus, which was first introduced in
[26] and [27].

Let ∆ be a finite irreducible root system (which is contains, zero and not
necessarily reduced) as in [10, Chap VI]. For each root α ∈ ∆× := ∆ \ {0}, let
α̌ be the corresponding coroot such that 〈β, α̌〉 be the Cartan integer for all
β ∈ ∆. Set ∆ind := {0} ∪ {α ∈ ∆ | α/2 6∈ ∆}. We denote the root lattice of ∆
by Q(∆).
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Let G be a finite-dimensional split simple Lie algebra over F with root space
decomposition G = H⊕ (

⊕
α∈∆ind

Gα) relative to a split Cartan subalgebra H.
Every finite root system ∆ is one of the reduced root system ∆ind or is a non
reduced root system of type BCl.

Definition 1.1. Let L be a Lie algebra over a field F, and let ∆ be a finite
irreducible root system. Then L is said to be graded by the root system ∆ or
to be ∆-graded if

(i) L contains as a subalgebra, a finite dimensional split simple Lie algebra
G, called the grading subalgebra with root system ∆ind relative to a
split Cartan subalgebra H.

(ii) L has a decomposition L =
⊕

α∈∆ Lα, where Lα = {x ∈ L : [h, x] =
α(h)x for all h ∈ H}.

(iii) L0 =
∑

α∈∆× [Lα,L−α].
(iv) Either ∆ is reduced and equals the root system ∆ind of grading pair

(G,H) or ∆ is of type BCl and ∆ind is of type Bl, Cl, or Dl.

The above definition is due to Berman and Moody [9] for the case ∆ = ∆ind.
The extension to the nonreduced root systems BCl was developed by Alison,
Benkart and Gao in [3] for l ≥ 2 and by Benkart and Smirnov in [8] for l = 1.

Definition 1.2. A Lie algebra L is a Lie Λ-torus of type ∆ if the following
axioms hold:

(LT1) L has a grading by (Q(∆)⊕ Λ), of the form

L =
⊕

α∈∆

⊕

λ∈Λ

Lλ
α, [Lλ

α,L
µ
β ] ⊂ Lλ+µ

α+β , satisfying Lλ
α = 0 if α /∈ ∆.

(LT2) For λ ∈ Λ we have Lλ
0 =

∑
α∈∆×, µ∈Λ[L

µ
α,L

λ−µ
−α ].

(LT3) For α ∈ ∆× and λ ∈ Λ we have:

(i) dimLλ
α ≤ 1, with dimL0

α = 1 if α ∈ ∆ind,

(ii) if dimLλ
α = 1, then there exists (eλα, f

λ
α) ∈ Lλ

α × L−λ
−α such that hλα :=

[eλα, f
λ
α ] ∈ L0

0 acts on xµβ ∈ Lµ
β (β ∈ ∆, µ ∈ Λ) by

[hλα, x
µ
β ] = 〈β, α̌〉xµβ .

(LT4) Λ = 〈{λ ∈ Λ | Lλ
α 6= 0 for some α ∈ ∆}〉.

The type of L is by definition the type of the finite root system ∆, and the
rank of Λ is called the nullity of L. Finally, L is called centerless if the center
Z(L) of L is zero.

Let L =
⊕

α∈∆

⊕
λ∈Λ Lλ

α be a Lie Λ-torus of type ∆. It follows from (LT1)
that L has a grading by Q(∆) as

(1.3) L =
⊕

Q(∆)

Lα, where Lα =
⊕

λ∈Λ

Lλ
α,
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and also L is Λ-graded by

(1.4) L =
⊕

λ∈Λ

Lλ, where Lλ =
⊕

α∈∆

Lλ
α.

The two gradings are compatible by Lλ
α := Lλ ∩ Lα for all α ∈ ∆ and λ ∈ Λ.

If we fix an ordered basis {αi | 1 ≤ i ≤ ℓ} of ∆. By (LT3)(ii), for each
α ∈ ∆ind there exists (eα, fα) ∈ L0

α × L0
−α, such that (eα, hα := [eα, fα], fα) is

an sl
(α)
2 -triple. The Lie subalgebra of L0 generated by eα, hα, fα is isomorphic

to sl2(F). Let G be the subalgebra of L0 generated by {eαi
, hαi

, fαi
| 1 ≤ i ≤ ℓ}

and H =
∑ℓ

i=1 Fhαi
. It is showed in [5] that G is a finite dimensional split

simple Lie subalgebra of the Lie torus L with splitting Cartan subalgebra H
and root system ∆ind, relative to H. Then L is a (∆,Λ)-graded Lie algebra
with grading pair (G,H), in the sense of [26].

Definition 1.5. Let L be a Lie algebra. A central extension of L is a pair
(L̃, π) consisting of a Lie algebra L̃ and a surjective Lie algebra homomorphism

π : L̃ −→ L whose kernel lies in the center Z(L̃) of L̃. A central extension

(L̃, π) of L is called a covering (or a cover) if L̃ is perfect ([L̃, L̃] = L̃). A

homomorphism from a central extension (L̃, π) of L to another central extension

(Ľ, π̌) of L is a Lie algebra homomorphism ϕ : L̃ −→ Ľ which is satisfies

π̌◦ϕ = π. A central extension (L̃, π) of L is called a universal central extension if

there exists a unique homomorphism from (L̃, π) to any other central extension
of L.

Remark 1.6. (a) By a central extension (L̃, π) of L we understand a short exact
sequence of Lie algebras

0 −→ C
i

−→ L̃
π

−→ L −→ 0

such that C is in the center of L̃.
(b) To verify that a covering is universal, it suffices to show the existence of

a homomorphism from the covering to any central extension of L. It is obvious
from the universal property that, any two universal coverings are isomorphic
as central extension.

(c) Any perfect Lie algebra L has a unique (up to isomorphism) universal

covering (L̃, π) which is also perfect (see [11]). The kernel of π is its second
homology H2(L,F) with trivial coefficients (see [24, Theorem 7.9.2]).

Lemma 1.7. Let (L̃, π) be a central extension of perfect Lie algebra L. Then

(i) L̃ = [L̃, L̃] + kerπ, and ([L̃, L̃], π |[L̃,L̃]) is a covering of L,

(ii) Z(L̃) = π−1(Z(L)) and π(Z(L̃)) = Z(L).

Proof. See [21, Lemma 1.5]. �
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2. Constructions for universal coverings of Lie tori

In this section, we use Van der Kallen’s method to construct universal cov-
erings of Lie tori. These Lie algebras arise naturally in the construction of
Extended affine Lie algebras.

Let L be a Lie torus. We consider the F-submodule J of F-module L ⊗ L
spanned by all elements of the form

x⊗ x and x⊗ [y, z] + y ⊗ [z, x] + z ⊗ [x, y]

for all x, y, z ∈ L. Then J can be thought of as a linear span of all homogeneous
elements L ⊗ L of degree 2. Define L̃ = (L ⊗ L)/J. For all x, y in L, x ∧ y

denotes the image of x⊗y under the canonical map, i.e., x∧y = x⊗y+J ∈ L̃.
Note that we have the following identities in L̃,

(2.1) x ∧ x = 0, x ∧ y = −y ∧ x and x ∧ [y, z] + y ∧ [z, x] + z ∧ [x, y]

for all x, y and z in L. By a straightforward computation, the F-linear map
L ⊗ L −→ [L,L] by x ⊗ y 7−→ [x, y] vanishes on J and hence descends to a
F-linear map

(2.2) π : L̃ −→ [L,L], x ∧ y 7−→ [x, y]

for all x, y ∈ L, with

kerπ =

{
∑

i

xi ∧ yi |
∑

i

[xi, yi] = 0

}
.

Now, we define a composition law [·, ·]∼ on L̃ by

(2.3) [l1, l2]
∼ = π(l1) ∧ π(l2)

for all l1, l2 in L̃. The module L̃ becomes an F-algebra with respect to the
product (2.3). Also by definition, π is a homomorphism. In particular, we
have

(2.4) [x ∧ y, x′ ∧ y′]∼ = [x, y] ∧ [x′, y′], x, y, x′, y′ ∈ L.

Lemma 2.5. Let L be a Lie torus. Then L̃ is a Lie algebra with respect to

product [·, ·]∼ in (2.3).

Proof. It is clear that the product in (2.3) on L̃ is linear in each component. The
anti-commutativity follows from (2.1). For the Jacobi identity, it is sufficient
to verify it for elements of the spanning set {x ∧ y : x, y ∈ L}. Consider three
elements li = xi ∧ yi, where i = 1, 2, 3 and xi, yi ∈ L. By (2.3) and (2.4) we
have

[l1, [l2, l3]
∼]

∼
= π(l1) ∧ (π(l2) ∧ π(l3))

= [x1, y1] ∧ ([x2, y2] ∧ [x3, y3])

= [x1, y1] ∧ [[x2, y2], [x3, y3]].

By a similar computation and using (2.1), we obtain Jac(l1, l2, l3) = 0. �
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Proposition 2.6. Let L be a Lie torus. Then the pair (L̃, π) is a central

extension of L.

Proof. The F-linear map π is a homomorphism of Lie algebras. Indeed, by
(2.2), (2.3) and (2.4) we have

π([x ∧ y, x′ ∧ y′]∼) = π([x, y] ∧ [x′, y′])

= [[x, y], [x′, y′]]

= [π(x ∧ y), π(x′ ∧ y′].

Now, since L is perfect ([L,L] = L), π : L̃ −→ L is a surjective Lie algebra
homomorphism and also kerπ lies in the center of L. �

In this situation, we show that the central extension (L̃, π) of Lie torus L in
Proposition 2.6, is a universal covering:

Theorem 2.7. Let L be a Lie torus. Then the pair (L̃, π) is a universal

covering of L.

Proof. Since L is a perfect Lie algebra, L̃ is perfect. Then the central extension
(L̃, π) is a covering of L. To show that (L̃, π) is universal, it suffices to prove

that there exists a homomorphism from (L̃, π) to any central extension of L

(see Remark 1.6(b)). Suppose that (L̂, π̂) is any central extension of L. Then

π̂ is a surjective Lie algebra homomorphism, and since ker π̂ lies in Z(L̂), we
obtain the short exact sequence

0 −→ ker π̂
i

−→ L̂
π̂

−→ L −→ 0.

Now, we choose a subspace L′ of L̂ such that π̂ : L′ −→ L be an isomorphism
of F-vector space. Let α : L −→ L′ be the inverse map of π̂. We will denote by
[·, ·]ˆ, the Lie product on L̂. Then for all x, y ∈ L we have

(2.8) α([x, y])− [α(x), α(y)]ˆ∈ Z(L̂).

Our choice of L′ has led us to an F-linear map

L × L −→ L̂, (x, y) 7−→ [α(x), α(y)]ˆ.

Hence by the universal property of the tensor product, we obtain an F-linear
map

f : L ⊗ L −→ L̂, x⊗ y 7−→ [α(x), α(y)]ˆ.

By (2.8) and the fact that L̂ is a Lie algebra over F, this map vanishes on the
F-submodule J of L ⊗F L. Thus we obtain an F-linear map

(2.9) ψ : L̃ −→ L̂, x ∧ y 7−→ [α(x), α(y)]ˆ

for all x, y ∈ L. We claim that ψ is a Lie algebra homomorphism. For all
x ∧ y, x′ ∧ y′ ∈ L̃, by (2.8) and (2.9), we have

ψ([x ∧ y, x′ ∧ y′]˜) = ψ([x, y] ∧ [x′, y′])
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= [α([x, y]), α([x′, y′])]ˆ

= [[α(x), α(y)]ˆ, [α(x′), α(y′)]ˆ]ˆ

= [ψ(x ∧ y), ψ(x′ ∧ y′)]ˆ.

Next, we show that π̂ ◦ ψ = π. Let x, y ∈ L. Then

(π̂ ◦ ψ)(x ∧ y) = π̂([α(x), α(y)]ˆ)

= π̂(α([x, y]) + z)

= π̂(α([x, y]))

= [x, y] + z′

= π(x ∧ y),

where z ∈ Z(L̂) and z′ ∈ Z(L). Thus ψ is a Lie algebra homomorphism, which

satisfies π̂ ◦ ψ = π. By Definition 1.5, ψ is a homomorphism from (L̃, π) to

(L̂, π̂). This completes the proof. �

Corollary 2.10. Let L be a Lie torus. Then the (L̃, π) is a covering for all

coverings of L. In particular, (L̃, π) is a universal central extension of centerless

Lie torus L/Z(L).

Proof. The first statement is obvious by the Remark 1.6(c) and Theorem 2.7.
The last statement is now clear. �

Let L be a Lie torus and (L̃, π) be its universal covering. We first recall the

notion of lifting. An automorphism θ ∈ AutF(L) is said to lift to L̃, if there

exists an automorphism θ̃ ∈ AutF(L̃) for which θ ◦ π = π ◦ θ̃.

Theorem 2.11 (lifting of automorphisms). Assume L is a centerless Lie torus

and let (L̃, π) be its universal covering. Then

(i) The center Z(L̃) of L̃ is precisely the ker(π). Furthermore, the canonical

map AutF(L̃) −→ AutF(L) is an isomorphism.

(ii) θ ∈ AutF(L) lifts to every central extension of L if and only if the lift

θ̃ of θ acts on ker(π) by scalar multiplication.

Proof. (i) See [23] for the proof. Another proof can be found in [21].
(ii) See [22, Lemma 2.7]. �

Proposition 2.12 (lifting of derivations). Let (L̃, π) be the universal covering

of Lie torus L. Then

DerF(L) = {δ ∈ DerF(L̃) : δ(ker(π)) = ker(π)}.

In particular, IDerF(L̃) ∼= ˜IDerF(L), i.e., adL̃(x∧ y) =
˜adL[x, y]. Moreover, if

L is a centerless Lie torus, then DerF(L) ∼= DerF(L̃).
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Proof. Let δ ∈ DerF(L). Consider the F-linear map

δ ⊗ δ : L⊗ L −→ L⊗ L, x⊗ y 7−→ δ(x)⊗ y + x⊗ δ(y)

for all x, y ∈ L. This map leaves the submodule J ⊆ L⊗ L invariant. Indeed,
for all x ∈ L we have

(δ ⊗ δ)(x ⊗ x) = δ(x) ⊗ x+ x⊗ δ(x)

= (x+ δ(x)) ⊗ (x+ δ(x)) − (x⊗ x) − (δ(x)⊗ δ(x)) ∈ J.

Also, for all x, y ∈ L a straightforward computation shows that

(δ ⊗ δ)(x⊗ [y, z] + y ⊗ [z, x]) + x⊗ [y, z] + z ⊗ [x, y])

= (δ(x) ⊗ [y, z] + y ⊗ [z, δ(x)] + z ⊗ [δ(x), y])

+(x⊗ [δ(y), z] + δ(y)⊗ [z, x] + z ⊗ [x, δ(y)])

+(x⊗ [y, δ(z)] + y ⊗ [δ(z), x] + δ(z)⊗ [x, y]) ∈ J.

Hence, δ ⊗ δ induces an F-linear map

δ̃ : L̃ −→ L̃, x ∧ y 7−→ δ(x) ∧ y + x ∧ δ(y),

which is a derivation on L̃. Indeed, for all li = xi ∧ yi, where i = 1, 2 and
xi, yi ∈ L we have

δ̃([l1, l2]) = δ̃(π(l1) ∧ π(l2))

= δ(π(l1)) ∧ π(l2) + π(l1) ∧ yδ(l2)

= δ[x1, y1] ∧ [x2, y2] + [x1, y2] ∧ δ[x2, y2]

= [δ(x1), y1] ∧ [x2, y2] + [x1, δ(y1)] ∧ [x2, y2]

+[x1, y2] ∧ [δ(x2), y2] + [x1, y1] ∧ [x2, δ(y2)]

= [δ(x1) ∧ y1 + x1 ∧ δ(y1), x2 ∧ y2]+[x1 ∧ y1, δ(x2) ∧ y2 + x2 ∧ δ(y2)]

= [δ̃(x1 ∧ y1), x2 ∧ y2] + [x1 ∧ y1, δ̃(x2 ∧ y2)]

= [δ̃(l1), l2] + [l1, δ̃(l2)].

It is clear that δ ◦ π = π ◦ δ̃. In particular, δ̃ leaves ker(π) invariant, that is,

δ̃ acts on ker(π) by scalar multiplication. Then by Theorem 2.11(ii), the map

δ 7−→ δ̃ is a Lie algebra homomorphism, which its kernel is zero on [L,L] = L.
This proves the first assertion. By the lifting Theorem of automorphisms, it is
easily seen that for all x, y ∈ L

˜adL[x, y] = ad
L̃
(x ∧ y),

whence ˜adL(π(l)) = ad
L̃
(l) for all l ∈ L̃, and so ãdL = IDerF(L̃). If L is a

centerless Lie torus, by Theorem 2.11(i) and the first part of this proposition,
we get the result. �
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3. The structure of universal coverings of Lie tori

In this section we give a completely description for the universal covering of
a Lie Λ-torus of type ∆. We will show that if (L̃, π) is a universal cover of L,

as in Section 2, then L̃ is again a Lie Λ-torus of type ∆.

Definition 3.1. Let Λ be an abelian group and let L =
⊕

λ∈Λ Lλ be a Λ-graded
Lie algebra. By definition, a Λ-graded central extension of L is a Λ-graded Lie
algebra K together with a central extension π : K −→ L which is at the same
time a homomorphism of Λ-graded Lie algebras and denoted by (K, π). A Λ-
graded central extension (K, π) of L is a Λ-cover of L if π : K −→ L is a
covering, i.e., if K is perfect.

Proposition 3.2. Let L =
⊕

α∈∆

⊕
λ∈Λ Lλ

α be a Lie Λ-torus of type ∆ and

(L̃, π) be its universal covering. Then L̃ is a (Q(∆)⊕ Λ)-graded Lie algebra.

Proof. Consider L =
⊕

λ∈Λ Lλ as a Λ-graded Lie algebra (see (1.4)). For λ ∈ Λ,
let

(3.3) (L ⊗ L)λ : =
⊕

µ∈Λ

Lµ ∧ Lλ−µ.

Then L ⊗ L =
⊕

λ∈Λ(L ⊗ L)λ is a Λ-graded Lie algebra. So, the submodule
J ⊆ L ⊗ L is a graded submodule of the Λ-graded module L ⊗ L. Hence
L̃ = (L ⊗ L)/J is Λ-graded with respect to the quotient grading. Namely, for

λ ∈ Λ we let L̃λ : =
∑

µ∈Λ Lµ ∧ Lλ−µ and define L̃ =
⊕

λ∈Λ L̃λ. By Definition

3.1, π(Lλ) ⊆ Lλ (λ ∈ Λ), so by (2.3), we get

[L̃λ, L̃µ] = π(L̃λ) ∧ π(L̃µ) ⊆
∑

λ, µ∈Λ

π(L̃λ) ∧ π(L̃µ) ⊆
∑

λ, µ∈Λ

Lλ ∧ Lµ = L̃λ+µ.

Then L̃ is a Λ-graded Lie algebra and that π : L̃ −→ L is a homomorphism of
Λ-graded Lie algebras. Also, ker(π) ⊆ Z(L̃) is a Λ-graded submodule. Since

L̃ is perfect, π is a covering and that (L̃, π) is a Λ-cover of L. Now, we show

that π : L̃ −→ L is a (Q(∆) ⊕ Λ)-covering. Consider L =
⊕

Q(∆) Lα as a

root graded Lie algebra (see (1.3)). Then L has a weight space decomposition
with respect to the toral subalgebra H ⊆ L0

0. Since L is perfect, we obtain that

H̃ : = π−1(H) is a toral subalgebra of L̃. It is also Λ-graded, i.e., for λ ∈ Λ, we

let H̃λ = H̃ ∩ L̃λ and define H̃ =
⊕

λ∈Λ H̃λ. Note that, for all 0 6= λ ∈ Λ we
have

(3.4) H̃λ ⊆ ker(π) ⊆ Z(L̃).

For α ∈ Q(∆), let L̃α : =
∑

β∈Q(∆)Lβ ∧ Lα−β and define L̃ =
⊕

α∈Q(∆) L̃α.

By (3.4), for all λ ∈ Λ we have

[H̃, L̃λ] = [
⊕

λ∈Λ

H̃λ, L̃λ] ⊆ L̃λ.
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Hence, L̃λ is an H̃-submodule of L̃ and so

(3.5) L̃λ =
⊕

α∈Q(∆)

L̃λ
α, where L̃λ

α : = L̃α ∩ L̃λ.

That is, the root space decomposition of L̃ with respect to H̃ and the Λ-grading
of L̃ are compatible. So L̃ =

⊕
α∈Q(∆)

⊕
λ∈Λ L̃λ

α is a (Q(∆) ⊕ Λ)-graded Lie

algebra and that π : L̃ −→ L is a (Q(∆)⊕ Λ)-covering. �

Lemma 3.6. Let L =
⊕

α∈∆

⊕
λ∈Λ Lλ

α be a Lie Λ-torus of type ∆ and (L̃, π)
be its universal covering. Then for all λ ∈ Λ we have

(3.7) L̃λ
0 =

∑

µ∈Λ, α∈∆×

[L̃µ
α, L̃

λ−µ
−α ]˜.

Proof. Let Υ be the right hand side of (3.7). We know that L̃ is perfect, then
we have

L̃λ
0 = [L̃λ

0 , L̃
λ
0 ] + Υ.

We also observe that Z(L̃) =
⊕

λ∈Λ(Z(L̃)∩Lλ
0 ), and this implies that π |

L̃λ
α

is

bijective for α ∈ ∆×, λ ∈ Λ. By this fact and by surjectivity of π, for all λ ∈ Λ
we have

π(Υ) =
∑

α∈∆×, µ∈Λ

π(L̃µ
α) ∧ π(L̃)

λ−µ
−α

=
∑

α∈∆×, µ∈Λ

[Lµ
α,L

λ−µ
−α ].

By (LT2) for L, we get L̃λ
0 ⊆ Υ+ ker(π). Since ker(π) ⊆ Z(L̃), it follows that

[L̃µ
α, L̃

λ−µ
−α ]˜⊆ [Υ,Υ]˜.

Now, we must show that Υ is a subalgebra of L̃. By the Jacobi identity, for all
λ, µ ∈ Λ and α ∈ ∆×

[L̃λ
0 , [L̃

µ
α, L̃

−µ
−α]

˜]˜ = [[L̃λ
0 , L̃

µ
α]
˜, L̃−µ

−α]
˜+ [L̃µ

α, [L̃
λ
0 , L̃

−µ
−α]

˜]˜

⊆ [L̃µ
α, L̃

−µ
−α]

˜. �

Proposition 3.8. For α ∈ ∆× and λ ∈ Λ we have

(i) dim L̃λ
α ≤ 1, with dim L̃0

α = 1 if α ∈ ∆ind.

(ii) If dim L̃λ
α = 1, then there exists (x̃λα, ỹ

λ
α) ∈ L̃λ

α × L̃−λ
−α such that h̃λα : =

[x̃λα, ỹ
λ
α]
˜∈ L̃0

0 acts on z̃µβ ∈ L̃µ
β (µ ∈ Λ, β ∈ ∆) by [h̃λα, z̃

µ
β ] = 〈β, α̌〉z̃µβ .

Proof. (i) Since π |
L̃λ

α

is one to one, for all α ∈ ∆× and all λ ∈ Λ we get the

results.
(ii) Let dim L̃λ

α = 1 (λ ∈ Λ, α ∈ ∆×). By part (i) we have dimLλ
α = 1, so by

(LT3)(ii) for L, there exists (xλα, y
λ
α) ∈ Lλ

α×L−λ
−α such that hλα : = [xλα, y

λ
α] ∈ L0

0
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acts on Lµ
β (µ ∈ Λ, β ∈ ∆) diagonally. For α ∈ ∆× and λ ∈ Λ, the map π |

L̃λ
α

is one to one. It follows that there exists (x̃λα, ỹ
λ
α) ∈ L̃λ

α × L̃−λ
−α such that they

are mapped onto (xλα, y
λ
α) ∈ Lλ

α × L−λ
−α by π. Let

h̃λα : = xλα ∧ yλα = [x̃λα, ỹ
λ
α]
˜∈ L̃0

0.

By Proposition 3.2, we know that

L̃ =
⊕

α∈Q(∆)

⊕

λ∈Λ

L̃λ
α, where L̃λ

α =
∑

β∈∆, µ∈Λ

Lµ
β ∧ Lλ−µ

α−β ,

with L̃λ
α = 0 if α /∈ ∆. Now, for β ∈ Q(∆), γ ∈ ∆, µ, ν ∈ Λ and vνγ ∈

Lν
γ , w

µ−ν
β−γ ∈ Lµ−ν

β−γ we have

[h̃λα, v
ν
γ ∧wµ−ν

β−γ ]
˜ = [xλα ∧ yλα, v

ν
γ ∧ wµ−ν

β−γ ]
˜

= [xλα, y
λ
α] ∧ [vνγ , w

µ−ν
β−γ ]

= hλα ∧ [vνγ , w
µ−ν
β−γ ]

= −vνγ ∧ [wµ−ν
β−γ , h

λ
α]− wµ−ν

β−γ ∧ [hλα v
ν
γ ]

= 〈β − γ, α̌〉 vνγ ∧ wµ−ν
β−γ + 〈γ, α̌〉 vνγ ∧ wµ−ν

β−γ

= 〈β, α̌〉 vνγ ∧ wµ−ν
β−γ . �

Remark 3.9. Let (eλα, h
λ
α, f

λ
α) be an sl

(α)
2 -triple associated to (α, λ) ∈ ∆× × Λ.

By Proposition 3.8(ii), let

ẽλα : =
1

2
hλα ∧ eλα ∈ L̃λ

α, f̃λ
α : =

1

2
fλ
α ∧ hλα ∈ L̃−λ

−α, h̃λα : = fλ
α ∧ eλα ∈ L̃0

0.

They are mapped onto eλα, h
λ
α, f

λ
α by π. Then the subalgebra Sα : = Fẽλα ⊕

Fh̃λα ⊕ f̃λ
α of L̃ is isomorphic to the Lie algebra sl2(F).

Now, we summarize the above results in the following main theorem:

Theorem 3.10. Let L =
⊕

α∈∆

⊕
λ∈Λ Lλ

α be a Lie Λ-torus of type ∆ and

(L̃, π) be its universal covering. Then L̃ is a Lie Λ-torus of type ∆.

Proof. By Propositions 3.2, 3.8 and Lemma 3.6, L̃ satisfies in axioms (LT1)–

(LT3). To prove that L̃ is a Lie Λ-torus of type ∆, it remains to show that

Λ = 〈SuppL̃〉. Suppose to contrary that L̃λ = 0 for some λ ∈ Λ. Then Lλ
α = 0

for any α ∈ Q(∆). Because of π(L̃λ
α) = 0, we get L̃λ

α ⊆ Z(L̃). Choose β ∈ ∆ind

such that 〈α, β̌〉 6= 0. By Remark 3.9, let (ẽ0β, h̃
0
β , f̃

0
β) be an sl

β
2 -triple associated

to (β, λ) ∈ ∆ind × Λ. Then h̃0β acts diagonally L̃λ
α. That is, by Proposition

3.8(ii), for some γ ∈ ∆, µ ∈ Λ and xµγ ∧ yλ−µ
α−γ ∈ Lµ

γ ∧ yλ−µ
α−γ we have

(3.11) [h̃0β , x
µ
γ ∧ yλ−µ

α−γ ]
˜= 〈α, β̌〉 xµγ ∧ yλ−µ

α−γ .
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Because of π(L̃µ
β) = 0, we have L̃µ

β ⊆ Z(L̃). It follows from (3.11) that xµγ ∧

yλ−µ
α−γ = 0, which is a contradiction. �
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