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DOUBLY NONLINEAR PARABOLIC EQUATIONS

INVOLVING p-LAPLACIAN OPERATORS VIA

TIME-DISCRETIZATION METHOD

Kiyeon Shin and Sujin Kang

Abstract. In this paper, we consider a doubly nonlinear parabolic par-

tial differential equation
∂β(u)

∂t
−∆pu+ f(x, t, u) = 0 in Ω× [0, T ], with

Dirichlet boundary condition and initial data given. We prove the exis-
tence of a discrete approximate solution by means of the Rothe discretiza-
tion in time method under some conditions on β, f and p.

1. Introduction

In this paper, we study a doubly nonlinear parabolic partial differential
equation involving the p-Laplacian operator. More precisely, we are interested
in the existence and uniqueness of the solution of problem

(1)






∂β(u)
∂t −∆pu+ f(x, t, u) = 0 in Ω× [0, T ],

u = 0 on ∂Ω× [0, T ],
u(·, 0) = u0 in Ω,

where ∆pu=div(|∇u|p−2∇u), 1 < p <∞, β is a nonlinearity of porous medium
type and f is a nonlinearity of reaction diffusion type. Let Ω be a regular open
bounded subset of finite dimensional space R

d (d ≥ 3) and ∂Ω be its smooth
boundary. These problems arise in many applications in the fields of mechanics,
physics and biology (non Newtonian fluids, gas flow in porous media, spread
of biological populations, etc).

Equations of the form (1) for p = 2 has been motivated by the following
two papers. The first one due to M. Gurtin [9] gives a non phenomenological
derivation of the generalized Allen-Cahn equation. This equation describes
some particular aspects of isothermal phase separation process. Performing
a clear distinction between thermodynamical laws and constitutive equations,
which is in the first part of [9], M. Gurtin propose the following generalization
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of the Allen-Cahn equation

a(u,∇u, ut)ut −∆u+ f(t, x, u) = 0(2)

with a ≥ 0. So, this equation can be degenerate and if the coefficient a depends
only on u, we may rewrite (2) under the form of equation (1) for p = 2. Next,
in [13], A. Miranvile and G. Schimperna use Gurtin’s approach to model non-
isothermal phase transition problem. They end up with the following system
of PDE’s

(u2)t −∆u = f + uχχt + (χt)
2, χt −∆χ+ g(χ) = −uχ,

where the unknowns are the absolute temperature u and the phase field χ. If
χ is given, then the above equation takes the form (1) if β(u) = u2 for positive
u. Regarding the potential f , we assume that it satisfies some sign condition
which is often used in phase transition problems [7]. For instance, f(t, x, u)
may be equal to f(u) = up − u2 with p ≥ 3 odd. Uniqueness of the solution to
(2) for p = 2 satisfying homogeneous Dirichlet boundary conditions is a simple
consequence of a deep result of Otto [14].

In case of p = 2 of (1), M. Schatzman, A. Eden, B. Michaux, J. M. Rakoto-
son, A. Rougirel, J. I. Diaz and J. F. Padial [4, 5, 6, 15, 17] dedicated to the
existence of solutions and to the large time behavior of these equations in a
lot of works. M. Schatzman [17] considered for the problem in which β(u) = u
for p = 2 of (1) and then the problem reduces the reaction-diffusion equations.
A. Eden, B. Michaux and J. M. Rakotoson studied the existence of solutions
using the method of semi-discretization [5] as well as the method of Galerkin
approximation [6]. A. Rougirel [15] studied the solution of asymptotic behav-

ior for |∂f∂t (t, x, u)| ≤ CM , (CM > 0). And J. I. Diaz and J. F. Padial [4] are
considered the existence of solution in BV t(Q) space using β(ut) instead of
∂β(u)
∂t .
In case of p > 1 of (1), A. Bensoussan, L. Boccardo and F. Murat [3] studied

the existence of solution for β = 0 and A. El Hachimi and H. El Ouardi [8]
studied the existence and regularity of this equation under the fact that f is
differentiable by the method of Galerkin approximation.

Various abstract evolution equations have been considered using Rothe time-
discretization method, see, for instance, Kartsatos and Parrott [10] and refer-
ences cited therein. In the paper, the authors solved the initial-boundary value
problem for the time-dependent functional equation by the time-discretization
method.

This is the plan of paper. We recall our assumptions and state main results
in Section 2. In Section 3, we show the existence of discrete scheme. And, after
showing some estimates on the approximations, the passage to the limit and
the existence results are given in Section 4.
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2. Assumptions and main results

We let || · ||p, || · ||1,p and || · ||−1,p denote the norm in Lp(Ω), W 1,p
0 (Ω) and

W−1,p(Ω) for 1 < p < ∞, respectively. And 〈·, ·〉 denotes the duality between

W 1,p
0 (Ω) and W−1,p(Ω) or denotes inner product of L2(Ω). For 1 < p < ∞,

we define the conjugate p′ of p by 1/p+ 1/p′ = 1. In this paper, Ci and C will
denote positive constants and λi the imbedding constants such that





|| · ||p ≤ λ1|| · ||1,p if 2d
2+d ≤ p <∞,

|| · ||2 ≤ λ2|| · ||1,p if 2d
2+d ≤ p < 2,

|| · ||1 ≤ λ3|| · ||p ≤ λ4|| · ||1,p if p ≥ 2

(cf. [1]).

We define ψ by ψ(t) =
∫ t
0
β(s)ds for t ∈ R and a continuous function β

with β(0) = 0. Then, the Legendre transform of ψ is also defined by ψ∗(τ) =
sups∈R

{τs− ψ(s)}.
Now, we present our assumptions which are used throughout this paper.

We suppose d∗ ≤ p <∞ where d∗ = (2d)/(d+ 2), u0 ∈ L∞(Ω) with u0 = 0 on
∂Ω and the followings:

(H1) The function β : R → R is increasing and continuous with β(0) = 0.
(H2) For ξ ∈ R, the map (x, t) 7→ f(x, t, ξ) is measurable and ξ 7→ f(x, t, ξ)

is continuous a.e. in Ω × [0, T ]. Furthermore, we assume that there
exits C1 > 0 such that signξ f(x, t, ξ) ≥ −C1 for a.e. (x, t) ∈ Ω× [0, T ].

(H3) For all M > 0, there exists CM > 0 such that, if |ξ|+ |ξ′| ≤M , then

|f(x, t, ξ)− f(x, t, ξ′)|α ≤ CM (β(ξ)− β(ξ′))(ξ − ξ′),

where α =

{
2 if 1 < p < 2,

p′ if p ≥ 2.

(H3)′ There is C2 > 0 such that ξ 7→ f(x, t, ξ) + C2β(ξ) is increasing for
almost (x, t) ∈ Ω× [0, T ].

(H4) For almost every x ∈ Ω and for all M > 0, there exists C̃M > 0 such
that, if t+ t′ + |ξ| ≤M , then

|f(x, t, ξ)− f(x, t′, ξ)| ≤ C̃M |t− t′|1/α,

where α is same as in (H3).

Definition ([2]). Let X be a reflexive Banach space and A : X → X ′. We
say that A is monotone if 〈Ay − Az, y − z〉 ≥ 0 for all y, z ∈ X, and A is
hemicontinuous if for each y, z, w ∈ X the real-valued function t → 〈A(y +
tz), w〉 is continuous.

Lemma 2.1 (Minty’s Theorem [18]). Let X be a reflexive Banach space. If

A : X → X ′ is monotone and hemicontinuous, then

Ay = f if and only if 〈f −Az, y − z〉 ≥ 0

for all z ∈ X.



1182 K. SHIN AND S. KANG

Lemma 2.2 ([3]). Let Ω be a bounded set in R
d. Let 1 < p < ∞ be fixed and

A :W 1,p
0 (Ω) →W 1,p′(Ω) a nonlinear operator defined by

A(u) = −div a(x, u,Du),

where a(x, s, ξ) is a Carathéodory function a : Ω× R× R
d → R

d such that

|a(x, s, ξ)| ≤ β[|s|p−1 + |ξ|p−1 + k(x)],

[a(x, s, ξ)− a(x, s, η)](ξ − η) > 0, ξ 6= η,

a(x, s, ξ)ξ ≥ α|ξ|p,

where k(x) ∈ Lp
′

(Ω), k ≥ 0, β > 0 and α > 0.
Let g(x, s, ξ) be a Carathéodory function such that

g(x, s, ξ)s ≥ 0, |g(x, s, ξ)| ≤ b(|s|)(|ξ|p + c(x)),

where b is a continuous and increasing function with (finite) values on R
+ and

c ∈ L1(Ω), c ≥ 0. Then, for h ∈W−1,p′(Ω), the problem

Au + g(x, u,∇u) = h,

has at least one solution u ∈W 1,p
0 (Ω).

Lemma 2.3 ([16]). If u ∈W 1,p
0 (Ω) is a solution to the equation

−∆pu+ F (x, u) = h,

where h ∈ W−1,r, r > d
p−1 and F satisfies ξF (x, ξ) ≥ 0 in Ω × R, then

u ∈ L∞(Ω).

Now, we state our main results as follows:

Theorem 2.4. Under assumptions (H1), (H2), (H3) (or (H3)′) and (H4),
there exists a unique solution u of (1) such that

{
u ∈ Lp(0, T ;W 1,p

0 (Ω)) ∩ L∞(0, T ;L∞(Ω)) if p ≥ 2,

u ∈ L2(0, T ;L2(Ω)) if d∗ ≤ p < 2.

3. Existence of scheme

For the problem (1), we consider the discrete scheme (DS) for i = 1, 2, . . . , N ,

(DS)





β(ui)−β(ui−1)
τ −∆pui + f(x, iτ, ui) = 0 in Ω,

ui = 0 in ∂Ω,
u0 = u0 in Ω,

where Nτ = T and T is a fixed positive real. We shall show that (DS) has a
solution ui for i = 1, 2, . . . , N .

Theorem 3.1. Let (H1)–(H3) hold. Then for i = 1, 2, . . . , N , there exists a

unique solution ui ∈ W 1,p
0 (Ω) ∩ L∞(Ω) of (DS) for sufficiently small τ .
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Proof. First of all, we rewrite (DS) as

−τ∆pui + F (x, ui) = ϕi−1,

where F (x, ui) = β(ui) + τf(x, iτ, ui) +τC1sign(ui) and ϕi−1 = β(ui−1) +
τC1sign(ui).

Now, we consider the equation

(3) −τ∆pu+ F (x, u) = ϕ0 = β(u0) + τC1sign(u),

where F (x, u) = β(u)+τf(x, τ, u)+τC1sign(u) for fixed τ = T/N . It is obvious
that a(x, u,Du) := |∇u|p−2∇u satisfies all the three conditions of a in Lemma
2.2 (cf [11]). In particular, we used the inequality |a|p−2a(a−b) ≥ 1

p |a|
p− 1

p |b|
p

for the second condition. Since β is continuous, ϕ0 ∈ L∞(Ω). And, by (H1)
and (H2), g(x, u,∇u) := F (x, u) is a Carathéodory function with uF (x, u) ≥ 0.
Also, by (H2), |F (x, u)| ≤ β(|u|) + 2τC1. Thus, all the conditions of g in

Lemma 2.2 are satisfied. Therefore, there exists a solution u ∈ W 1,p
0 (Ω) of

(3). Moreover, by Lemma 2.3, u ∈ W 1,p
0 (Ω) ∩ L∞(Ω). We put u1 := u and

consider the equation −τ∆pu + F (x, u) = ϕ1 = β(u1) + τC1sign(u) where
F (x, u) = β(u) + τf(x, 2τ, u) + τC1sign(u). Continuing this process, we have

a solution ui of (DS) for i = 1, 2, . . . , N such that ui ∈ W 1,p
0 (Ω) ∩ L∞(Ω)

(i = 1, 2, . . . , N).
Next, we show the uniqueness of ui (i = 1, 2, . . . , N). Let ui and u

∗
i be two

solutions of (DS) for i = 1, 2, . . . , N . Using the result which we will establish
below (see Theorem 3.3), we have

||ui||1,p + ||u∗i ||1,p ≤M,

where M is a suitable positive constant independent of τ . And, from [11] we
have

(4) 〈−∆pu+∆pv, u− v〉 ≥

{
Cp||u− v||p1,p if p ≥ 2,

Cp
‖u−v‖2

1,p

(‖u‖1,p+‖v‖1,p)2−p if 1 < p < 2,

for all u, v ∈W 1,p
0 (Ω).

Since ui and u
∗
i are solutions of (DS), we have

(5) −τ∆pui + τ∆pu
∗
i + β(ui)− β(u∗i ) + τf(x, iτ, ui)− τf(x, iτ, u∗i ) = 0.

Multiplying (5) by ui − u∗i and integrating over Ω, we get

〈−τ∆pui + τ∆pu
∗
i , ui − u∗i 〉+ τ

∫

Ω

(f(x, iτ, ui)− f(x, iτ, u∗i ))(ui − u∗i )dx(6)

+

∫

Ω

(β(ui)− β(u∗i ))(ui − u∗i )dx = 0.

(a) Suppose p ≥ 2. By (4), the equation (6) becomes

τCp‖ui − u∗i ‖
p
1,p +

∫

Ω

(β(ui)− β(u∗i ))(ui − u∗i )dx
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≤

∫

Ω

[
1

C
1/p′

M

(f(x, iτ, ui)− f(x, iτ, u∗i ))

](
−C

1/p′

M τ(ui − u∗i )
)
dx.

By Young’s inequality and (H3),

τCp||ui − u∗i ||
p
1,p +

∫

Ω

(β(ui)− β(u∗i ))(ui − u∗i )dx

≤
1

p′

∫

Ω

(β(ui)− β(u∗i ))(ui − u∗i )dx+
1

p
τpλ1C

p

p′

M ||ui − u∗i ||
p
1,p.

Since β is increasing, 0 ≤ (τpλ1C
p/p′

M − pτCp)||ui − u∗i ||
p
1,p. It implies that for

sufficiently small τ , i.e., τ < (
pCp

λ1C
p/p′

M

)1/(p−1), ui = u∗i holds.

(b) Suppose d∗ ≤ p < 2. Since ||ui||1,p+ ||u∗i ||1,p ≤M , by (H3) the equation
(6) becomes

τCp
||ui − u∗i ||

2
1,p

(||ui||1,p + ||u∗i ||1,p)
2−p

+

∫

Ω

(β(ui)− β(u∗i ))(ui − u∗i )dx

≤ − τ

∫

Ω

(f(x, iτ, ui)− f(x, iτ, u∗i ))(ui − u∗i )dx

≤

∫

Ω

1

2CM
|f(x, iτ, ui)− f(x, iτ, u∗i )|

2dx+

∫

Ω

τ2CM
2

|ui − u∗i |
2dx

≤
1

2

∫

Ω

(β(ui)− β(u∗i ))(ui − u∗i )dx+

∫

Ω

τ2CM
2

|ui − u∗i |
2dx.

Therefore,

τCp
1

M2−p
||ui − u∗i ||

2
1,p +

∫

Ω

(β(ui)− β(u∗i ))(ui − u∗i )dx

≤
1

2

∫

Ω

(β(ui)− β(u∗i ))(ui − u∗i )dx+
τ2CMλ2

2
‖ui − u∗i ‖

2
1,p.

In other words, since β is increasing

0 ≤
1

2

∫

Ω

(β(ui)− β(u∗i ))(ui − u∗i )dx ≤

(
CMτ

2λ2
2

−
τCp
M2−p

)
||ui − u∗i ||

2
1,p.

Hence,

0 ≤

(
CMτ

2λ2
2

−
τCp
M2−p

)
||ui − u∗i ||

2
1,p.

It means that for sufficiently small τ , i.e., τ <
2Cp

M2−pCMλ2

, ui = u∗i holds. �

Proposition 3.2. We assume (H3)′ holds instead of (H3) in Theorem 3.1.

Then the same results hold provided that τ < 1/C2.
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Proof. In the proof of Theorem 3.1, we have only used (H1)–(H2) in showing

the existence of solution ui ∈ W 1,p
0 (Ω) ∩ L∞(Ω) (i = 1, 2, . . . , N) for (DS).

Hence, we are going to show the uniqueness using (H3)′. Let ui and u
∗
i be two

solutions of (DS). Then, from (H3)′, we have
∫

Ω

(f(x, iτ, ui)− f(x, iτ, u∗i ))(ui − u∗i )dx ≥ −C2

∫

Ω

(β(ui)− β(u∗i ))(ui − u∗i )dx.

Applying the above inequality to (6), by the monotonicity of −∆p (the p-
Laplacian operator),

(1− τC2)

∫

Ω

(β(ui)− β(u∗i ))(ui − u∗i )dx ≤ 0.

Then by (H1), if τ < 1/C2, we get ui = u∗i . �

Now, we consider the bounds of {ui} (i = 1, 2, . . . , N), which is constructed in
Theorem 3.1 and Proposition 3.2 as solutions of (DS).

Theorem 3.3. We assume (H1)–(H2). Then there exist C3, C4, C5, which are

positive constants and independent of τ , such that for all i = 1, 2, . . . , N ,

(a) ||ui||∞ ≤ C3,

(b) τ

m∑

i=1

||ui||
p
1,p ≤ C4,

(c) ||β(um)||22 +

m∑

i=1

||β(ui)− β(ui−1)||
2
2 ≤ C5,

where m = 1, 2, . . . , N .

Proof. (a) Multiplying (DS) by |β(ui)|
k
β(ui) and integrating over Ω, we have

by (H2) and Hölder’s inequality,
∫

Ω

|β(ui)|
k
β(ui)β(ui)dx−

∫

Ω

τ∆pui|β(ui)|
k
β(ui)dx

≤ ||β(ui)||
k+1
k+2||β(ui−1)||k+2 +m(Ω)

1/(k+2)
τC1||β(ui)||

k+1
k+2.

Then

||β(ui)||k+2 ≤ m(Ω)
1/k+2

τC1 + ||β(ui−1)||k+2.

By induction, we have ||β(ui)||k+2 ≤ m(Ω)
1/(k+2)

C1T + ||β(u0)||k+2. Letting
k → ∞, ||ui||∞ ≤ C(C1, T, u0) =: C3 by (H1).

(b) Let z ∈ W 1,p
0 (Ω) ∩ L∞(Ω) be fixed. Multiplying the equation (DS) by

ui − z and integrating over Ω, we have, by (H2),

〈β(ui)− β(ui−1), ui〉 − 〈β(ui)− β(ui−1), z〉+ τ ||ui||
p
1,p(7)

≤ τ

∫

Ω

|∇ui|
p−1|∇z|dx+ τC1

∫

Ω

|ui − z|dx.
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Now, we apply Young’s inequality to (7) to get

〈β(ui)− β(ui−1), ui〉 − 〈β(ui)− β(ui−1), z〉+
τ

2
||ui||

p
1,p(8)

≤

{
τ(

1

2

p

p− 1
)−(p−1) + 2pλ1τ

2

}
1

p
||z||p1,p + τC1||ui||∞m(Ω)

+ τC1||z||∞m(Ω) +
τ2

p′
Cp

′

1 m(Ω) + 2pλ1
τ

p

i∑

j=1

τ ||uj ||
p
1,p

for i = 1, 2, . . . ,m and for arbitrary m = 1, 2, . . . , N . By the property of the

Legendre transform ψ∗ of ψ =
∫ t
0 β(s)ds,∫

Ω

(ψ∗(β(ui))− ψ∗(β(ui−1))) dx ≤

∫

Ω

(β(ui)− β(ui−1))uidx

and by (8),
∫

Ω

(ψ∗(β(ui))− ψ∗(β(ui−1))) dx− 〈β(ui)− β(ui−1), z〉+
τ

2
||ui||

p
1,p(9)

≤

{
τ(

1

2

p

p− 1
)−(p−1) + 2pλ1τ

2

}
1

p
||z||p1,p + τC1||ui||∞m(Ω)

+ τC1||z||∞m(Ω) +
τ2

p′
Cp

′

1 m(Ω) + 2pλ1
τ

p

i∑

j=1

τ ||uj ||
p
1,p

for i = 1, 2, . . . ,m. By summing (9) with respect to i = 1, 2, . . . ,m and by (a),
∫

Ω

ψ∗(β(um))− ψ∗(β(u0))dx − 〈β(um)− β(u0), z〉+
τ

2

m∑

i=1

||ui||
p
1,p(10)

≤ C6 + C7τ
m∑

i=1

i∑

j=1

τ ||uj ||
p
1,p,

where C6 := C(T, p, λ1, C1, C(C1, T, u0),m(Ω), ||z||∞, ||z||1,p) and C7 := C(λ1,
p) and for m = 1, 2, . . . , N . By (10) and for arbitrary τ < τ̄ = 1/(4C7),

∫

Ω

ψ∗(β(um))dx − 〈β(um), z〉+
τ

4

m∑

i=1

||ui||
p
1,p(11)

≤

∫

Ω

ψ∗(β(u0))dx − 〈β(u0), z〉+ C6 + C7τ

m−1∑

i=1

i∑

j=1

τ ||uj ||
p
1,p.

Applying the discrete Gronwall’s lemma to (11),
∫

Ω

ψ∗(β(um))dx − 〈β(um), z〉+
τ

4

m∑

i=1

||ui||
p
1,p(12)

≤ C(β(u0), T, p, λ1, C1, C(C1, T, u0),m(Ω), ||z||∞, ||z||1,p).
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Hence by
∫
Ω ψ

∗(β(um))dx − 〈β(um), z〉 > −∞ and (12), τ
∑m

i=1||ui||
p
1,p ≤ C4.

(c) Multiplying (DS) by β(ui) and integrating over Ω, we get by (H2),
∫

Ω

(β(ui)− β(ui−1))β(ui)dx ≤ C1τ

∫

Ω

|β(ui)|dx.

Using a(a− b) = 1
2a

2 − 1
2b

2 + 1
2 (a− b)2,

||β(ui)||
2
2 − ||β(ui−1)||

2
2 + ||β(ui)− β(ui−1)||

2
2 ≤ 2C1τ ||β(ui)||1.

Summing the above inequality with respect to i = 1, 2, . . . ,m, we have by (a),

||β(um)||22 +
m∑

i=1

||β(ui)− β(ui−1)||
2
2 ≤ 2C1τ

m∑

i=1

||β(ui)||1 + ||β(u0)||
2
2

≤ 2C1Tm(Ω)C(C1, T, u0) + ||β(u0)||
2
2

for m = 1, 2, . . . , N . Thus ||β(um)||22 +
∑m

i=1||β(ui)− β(ui−1)||
2
2 ≤ C5. �

In the forthcoming discussion, the following notations will be used exten-
sively. For vectors ui (i = 0, 1, . . . , N) in Theorem 3.1, we define two functions
uτ and ūτ on [0, T ] by

uτ (0) := u0, uτ (t) := ui +
ui − ui−1

τ
(t− iτ),

ūτ (0) := u0, ūτ (t) := ui,

for t ∈ ((i − 1)τ, iτ ] (i = 1, 2, . . . , N) and τ = T/N . Similarly, we define

vτ (0) := v0, vτ (t) := vi +
vi − vi−1

τ
(t− iτ),

v̄τ (0) := v0, v̄τ (t) := vi,

where vi := β(ui) for i = 0, 1, . . . , N . Also, we let f̄τ (t) := fi = f(·, iτ, ui) for
t ∈ ((i − 1)τ, iτ ] (i = 1, 2, . . . , N).

Hence we can rewrite (DS) in a more compact form as

(13)
v′τ −∆pūτ + f̄τ = 0,
v̄τ = β(ūτ ),

a.e. in [0, T ].

4. Estimates and limits

In this section, we assume the hypotheses (H1)–(H4).

4.1. Estimates

First of all, by the consequence of Theorem 3.3, the followings are very easily
proven.

ūτ is bounded in Lp(0, T ;W 1,p
0 (Ω)) ∩ L∞(0, T ;L∞(Ω)),(14)

v̄τ is bounded in L∞(0, T ;L2(Ω)).(15)
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Moreover, by (14) and boundedness of p-Laplacian operator,

(16) −∆pūτ is bounded in Lp
′

(0, T ;W−1,p′(Ω)).

We emphasis that all the above boundedness are independent of τ .
First of all, we have u ∈ Lp(0, T ;W 1,p

0 (Ω)) ∩ L∞(0, T ;L∞(Ω)) which is a
weak limit of ūτ as τ → 0 by (14), i.e., ūτ converges weakly to u as τ → 0 in

Lp(0, T ;W 1,p
0 (Ω)) ∩ L∞(0, T ;L∞(Ω)). Moreover, by Theorem 3.3(c) we may

use the term w(x) := supt∈[0,T ]
∂β(u(x,t))

∂t which is bounded in L2(Ω) a.e.

Now, we consider the boundedness of v′τ .
(a) We suppose p ≥ 2. By (H3) and Theorem 3.3(c),

N∑

i=1

∫ iτ

(i−1)τ

||f(x, t, u)− f(x, t, ūτ )||
p′

−1,p′dt

≤

N∑

i=1

∫ iτ

(i−1)τ

{
sup

||v||1,p≤1

(

∫

Ω

|v(x)|pdx)
1

p (

∫

Ω

|f(x, t, u)−f(x, t, ūτ)|
p′dx)

1

p′

}p′

dt

≤ λ1
p′CMτ

N∑

i=1

∫ iτ

(i−1)τ

(||u||2 + ||ūτ ||2) ‖w‖2dt

≤ λ1
p′CMτ(||u||L2(0,T ;L2(Ω)) + ||ūτ ||L2(0,T ;L2(Ω)))||w||L2(0,T ;L2(Ω)).

And, by (H4),

N∑

i=1

∫ iτ

(i−1)τ

||f(x, t, ūτ (x, t)) − f(x, iτ, ūτ(x, t))||
p′

−1,p′dt

≤ C̃p
′

Mτ
N∑

i=1

∫ iτ

(i−1)τ

[ sup
||v||1,p≤1

|

∫

Ω

|v(x)|dx]1/p
′

dt

≤ C̃p
′

Mτ

N∑

i=1

∫ iτ

(i−1)τ

λp
′

4 dt = C̃p
′

Mτλ
p′

4 T.

Hence

||f̄τ (x, t, ūτ )− f(x, t, u)||p
′

Lp′(0,T ;W−1,p′ (Ω))
(17)

≤ 2p
′

(λ1
p′CMτ(||u||L2(0,T ;L2(Ω)) + ||ūτ ||L2(0,T ;L2(Ω)))||w||L2(0,T ;L2(Ω))

+ C̃p
′

Mτλ
p′

4 T ).

(b) Now, we suppose d∗ ≤ p < 2. In a very similar way, we have

||f̄τ (x, t, ūτ )− f(x, t, u)||2L2(0,T ;L2(Ω))(18)

≤ 2(τCM (||u||L2(0,T ;L2(Ω)) + ||ūτ ||L2(0,T ;L2(Ω)))||w||L2(0,T ;L2(Ω))

+ T C̃2
Mτm(Ω)).
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Since v′τ = ∆pūτ − f̄τ in (13), by (16)–(18), we conclude that

(19) v′τ is bounded in

{
Lp

′

(0, T ;W−1,p′

0 (Ω)) if p ≥ 2,

L2(0, T ;L2(Ω)) if d∗ ≤ p < 2.

4.2. Limits

(a) We suppose p ≥ 2. As we mentioned in (14) and (15), we have u and v
such that

ūτ → u weakly in Lp(0, T ;W 1,p
0 (Ω)) ∩ L∞(0, T ;L∞(Ω)),(20)

vτ → v weakly star in W 1,p′(0, T ;W−1,p′(Ω)),(21)

vτ → v weakly in C(0, T ;L2(Ω)),

v̄τ → v weakly star in Lp
′

(0, T ;W−1,p′(Ω)),(22)

v̄τ → v strongly in L2(0, T ;L2(Ω)).

We note that the above sequences with τ are for some not relabeled subse-
quence. Also we note that

lim
τ→0

∫ T

0

〈φ, v̄τ − vτ 〉dt ≤ lim
τ→0

τ

N∑

i=1

∫ iτ

(i−1)τ

∫

Ω

φ(x, t)(
vi − vi−1

τ
)dxdt

= lim
τ→0

τ

N∑

i=1

∫ iτ

(i−1)τ

∫

Ω

φ(x, t)v′τ (t)dxdt

= lim
τ→0

τ

∫ T

0

〈φ, v′τ 〉dt = 0

for all φ ∈ Lp(0, T ;W 1,p
0 (Ω)) by (19). Hence, vτ and v̄τ have the same limit v

in (21) and (22).

(b) Now, we suppose d∗ ≤ p < 2. In a very similar way, we have

ūτ → u strongly in L2(0, T ;L2(Ω)),(23)

vτ → v strongly in W 1,2(0, T ;L2(Ω)),(24)

vτ → v weakly in C(0, T ;L2(Ω)),

v̄τ → v strongly in L2(0, T ;L2(Ω)).(25)

Proof of Theorem 2.4. First of all, by (17) and (18), we have f such that

(26) f̄τ → f strongly in

{
Lp

′

(0, T ;W−1,p′

0 (Ω)) if p ≥ 2,

L2(0, T ;L2(Ω)) if d∗ ≤ p < 2.
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In addition, by (20), (22) [(23), (25), respectively] and (H1), we have v = β(u).
Therefore,
(27)

−∆pūτ → −
∂β(u)

∂t
− f weakly in

{
Lp

′

(0, T ;W−1,p′

0 (Ω)) if p ≥ 2,

L2(0, T ;L2(Ω)) if d∗ ≤ p < 2,

from (13) since β(ūτ (t)) = v̄τ (t) for t ∈ [0, T ]. And, by the property
∫

Ω

ψ∗(β(ui))− ψ∗(β(ui−1))dx ≤

∫

Ω

(β(ui)− β(ui−1))uidx

of the Legendre transform ψ∗ of ψ =
∫ t
0
β(s)ds,

lim sup
τ→0

∫ T

0

〈−∆pūτ , ūτ 〉dt

≤ lim sup
τ→0

N∑

i=1

∫ iτ

(i−1)τ

∫

Ω

−ψ∗(β(ui)) + ψ∗(β(ui−1))

τ
dxdt

+ lim sup
τ→0

∫ T

0

∫

Ω

− f̄τ ūτdxdt.

Moreover, since ψ∗(β(u(iτ)))−ψ∗(β(u((i−1)τ))) = ∂ψ∗

∂s (β(u(σ)))(iτ−(i−1)τ)
for σ ∈ ((i − 1)τ, iτ ],

lim sup
τ→0

∫ T

0

〈−∆pūτ , ūτ 〉dt

≤ lim sup
τ→0

N∑

i=1

∫ iτ

(i−1)τ

1

τ

∫

Ω

− τ
∂ψ∗(β(u(s)))

∂s
dxdt+

∫ T

0

〈−f, u〉dt

=

∫ T

0

∫

Ω

−
∂ψ∗(β(u(s)))

∂s
dxdt +

∫ T

0

〈−f, u〉dt

by (20) and (26) [(23), (26), respectively]. Also, since ψ(t) =
∫ t
0 β(s)ds, ψ

′(t) =

β(t) and (ψ∗)′ = (ψ′)−1,

lim sup
τ→0

∫ T

0

〈−∆pūτ , ūτ 〉dt(28)

≤

∫ T

0

∫

Ω

−
∂β(u(s))

∂s
u(s)dxdt+

∫ T

0

〈−f, u〉dt

=

∫ T

0

〈−
∂β

∂t
− f, u〉dt.

Therefore, by Lemma 2.1 (Minty’s Theorem), (27) and (28), there exists a
unique solution u of (1) such that

{
u ∈ Lp(0, T ;W 1,p

0 (Ω)) ∩ L∞(0, T ;L∞(Ω)) if p ≥ 2,

u ∈ L2(0, T ;L2(Ω)) if d∗ ≤ p < 2. �
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Remark 4.1. We may consider more generalized equation of the form





∂β(u)
∂t − div a(x, u,Du) + f(x, t, u) = 0 in Ω× [0, T ],

u = 0 on ∂Ω× [0, T ],
u(·, 0) = u0 in Ω,

where the nonlinear operator−div a(x, u,Du) is same as the operator in Lemma
2.2. As we mentioned in the proof of Theorem 3.1, since the p-Laplacian oper-
ator ∆pu=div(|∇u|p−2∇u) (1 < p < ∞) is a special case of −div a(x, u,Du),
the above equation has the same results provided we assume the conditions
(H1)–(H4) and (H3)′.
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