References
- Andrews, J. H. 1992. Biological control in the phyllosphere. Annu. Rev. Phytopathol. 30:603-635. https://doi.org/10.1146/annurev.py.30.090192.003131
- Asaka, O. and Shoda, M. 1996. Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14. Appl. Environ. Microbiol. 62:4081-4085.
- Becker, J. O. and Schwinn, F. J. 1993. Control of soil-borne pathogens with living bacteria and fungi: status and outlook. Pestic. Sci. 37:355-363. https://doi.org/10.1002/ps.2780370408
- Burkholder, W. H. 1950. Sour skin, a bacterial rot of onion bulbs. Phytopathology 40:115-118.
- Chiarini, L., Bevivino, A., Dalmastri, C., Tabacchioni, S. and Visca, P. 2006. Burkholderia cepacia complex species: health hazards and biotechnological potential. Trends Microbiol. 14:277-286. https://doi.org/10.1016/j.tim.2006.04.006
- Dennis, J. J. and Zylstra, G. J. 1998. Plasposons: modular selfcloning mini-transposon derivatives for the rapid genetic analysis of gram-negative bacterial genomes. Appl. Environ. Microbiol. 64:2710-2715.
- Dowling, D. N. and O'Gara, F. 1994. Metabolites of Pseudomonas involved in the biocontrol of plant disease. Trends Biotechnol. 12:133-141. https://doi.org/10.1016/0167-7799(94)90091-4
- Ehling-Schulz, M., Vukov, N., Schulz, A., Shaheen, R., Andersson, M., Martlbauer, E. and Scherer, S. 2005. Identification and partial characterization of the nonribosomal peptide synthetase gene responsible for cereulide production in emetic Bacillus cereus. Appl. Environ. Microbiol. 71:105-113. https://doi.org/10.1128/AEM.71.1.105-113.2005
- El-Banna, N. and Winkelmann, G. 1998. Pyrrolnitrin from Burkholderia cepacia: antibiotic activity against fungi and novel activities against Streptomyces. J. Appl. Microbiol. 85:69-78. https://doi.org/10.1046/j.1365-2672.1998.00473.x
- Farr, D. F., Bills, G. F., Chamuris, G. P. and Rossman, A. Y. 1989. Fungi on Plants and Plant Products in the United States. American Phytopathological Society, St. Paul, Minn, USA
- Fenton, A. M., Stephens, P. M., Crowley, J., O'Callaghan, M. and O'Gara, F. 1992. Exploitation of gene(s) involved in 2,4- diacetylphloroglucinol biosynthesis to confer a new biocontrol capability to a Pseudomonas strain. Appl. Environ. Microbiol. 58:3873-3878.
- Figurski, D. H. and Helinski, D. R. 1979. Replication of an origin containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc. Natl. Acad. Sci. USA 76:1648-1652. https://doi.org/10.1073/pnas.76.4.1648
- Glaser, M., Nulty, W. and Vagelos, P. R. 1975. Role of adenylate kinase in the regulation of macromolecular biosynthesis in a putative mutant of Escherichia coli defective in membrane phospholipid biosynthesis. J. Bacteriol. 123:128-136.
- Goelz, S. E. and Cronan, J. E. Jr. 1982. Adenylate kinase of Escherichia coli: evidence for a functional interaction in phospholipid synthesis. Biochemistry 21:189-195. https://doi.org/10.1021/bi00530a032
- Gu, G., Smith, L., Wang, N., Wang, H. and Lu, S.-E. 2009. Biosynthesis of an antifungal oligopeptide in Burkholderia contaminans strain MS14. Biochem. Biophys. Res. Commun. 380:328-332. https://doi.org/10.1016/j.bbrc.2009.01.073
- Gu, G., Smith, L., Liu, A. and Lu, S.-E. 2011. Genetic and biochemical map for the biosynthesis of occidiofungin, an antifungal produced by Burkholderia contaminans strain MS14. Appl. Environ. Microbiol. 77:6189-6198. https://doi.org/10.1128/AEM.00377-11
- Handelsman, J. and Stabb, E. V. 1996. Biocontrol of soilborn plant pathogens. Plant Cell 8:1855-1869. https://doi.org/10.1105/tpc.8.10.1855
- Hill, D. S., Stein, J. I., Torkewitz, N. R., Morse, A. M., Howell, C. R., Pachlatko, J. P., Becker, J. O. and Ligon, J. M. 1994. Cloning of genes involved in the synthesis of pyrrolnitrin from Pseudomonas fluorescens and role of pyrrolnitrin synthesis in biological control of plant disease. Appl. Environ. Microbiol. 60:78-85.
- Hoffman, L. M., Jendrisak, J. J., Meis, R. J., Goryshin, I. Y. and Reznikof, S. W. 2000. Transposome insertional mutagenesis and direct sequencing of microbial genomes. Genetica. 108:19-24. https://doi.org/10.1023/A:1004083307819
- Holmes, A., Govan, J. and Goldstein, R. 1998. Agricultural use of Burkholderia (Pseudomonas) cepacia: a threat to human health? Emerg. Infect. Dis. 4:221-227. https://doi.org/10.3201/eid0402.980209
- Horecka, J. and Jigami, Y. 2000. Identifying tagged transposon insertion sites in yeast by direct genomic sequencing. Yeast 16:967-970. https://doi.org/10.1002/1097-0061(200007)16:10<967::AID-YEA597>3.0.CO;2-G
- Howell, C. R. and Stipanovic, R. D. 1980. Suppression of Pythium ultimum induced damping-off of cotton seedlings by Pseudomonas fluorescens and its antibiotic pyoluteorin. Phytopathology 70:712-715. https://doi.org/10.1094/Phyto-70-712
- Huss, R. J. and Glaser, M. 1983. Identification and purification of an adenylate kinase-associated protein that influences the thermolability of adenylate kinase from a temperature-sensitive adk mutant of Escherichia coli. J. Biol. Chem. 258:13370- 13376.
- Janisiewicz, W. J. and Roitman, J. 1988. Biological control of blue mold and gray mold on apple and pear with Pseudomonas cepacia. Phytopathology 78:1697-1700. https://doi.org/10.1094/Phyto-78-1697
- Jayaswal, R. K., Fernandez, M., Upadhyay, R. S., Visintin, L., Kurz, M., Webb, J. and Rinehart, K. 1993. Antagonism of Pseudomonas cepacia against phytopathogenic fungi. Curr. Microbiol. 26:17-22. https://doi.org/10.1007/BF01577237
- Keel, C., Schnider, U., Maurhofer, M., Voisard, C., Laville, J., Burger, U., Wirthner, P., Haas, D. and Défago, G. 1992. Suppression of root diseases by Pseudomonas fluorescens CHA0: importance of the bacterial secondary metabolite 2,4-diacetylphloroglucinol. Mol. Plant-Microbe Interact. 5:4-13. https://doi.org/10.1094/MPMI-5-004
- Keen, N. T., Tamaki, S., Kobayashi, D. and Trollinger, D. 1988. Improved broad-host-range plasmids for DNA cloning in gram-negative bacteria. Gene 70:191-197. https://doi.org/10.1016/0378-1119(88)90117-5
- King, E. B. and Parke, J. L. 1993. Biocontrol of Aphanomyces root rot and Pythium damping-off by Pseudomonas cepacia AMMD on four pea cultivars. Plant Dis. 77:1185-1188. https://doi.org/10.1094/PD-77-1185
- Kraus, J. and Loper, J. E. 1995. Characterization of a genomic region required for production of the antibiotic pyoluteorin by the biological control agent Pseudomonas fluorescens Pf-5. Appl. Environ. Microbiol. 61:849-854.
- Lee, C. H., Kim, S., Hyun, B., Suh, J. W., Yon, C., Kim, C., Lim, Y. and Kim, C. 1994. Cepacidine A, a novel antifungal antibiotic produced by Pseudomonas cepacia. J. Antibiot. 47:1402- 1418. https://doi.org/10.7164/antibiotics.47.1402
- Lee, H., Vazquez-Laslop, N., Klyachko, K. A. and Neyfakh, A. A. 2003. Isolation of antibiotic hyper susceptibility mutants of Acinetobacter spp. by selection for DNA release. Antimicrob. Agents Chemother. 47:1267-1274. https://doi.org/10.1128/AAC.47.4.1267-1274.2003
- Lee, K. Y., Kong, H. G., Choi, K. H., Lee, S.-W. and Moon, B. J. 2011. Isolation and identification of Burkholderia pyrrocinia CH-67 to control tomato leaf mold and damping-off on crisphead lettuce and tomato. Plant Pathology J. 27:59-67. https://doi.org/10.5423/PPJ.2011.27.1.059
- Loper, J. E., Henkels, M. D., Shaffer, B. T., Valeriote, F. A. and Gross, H. 2008. Isolation and identification of rhizoxin analogs from Pseudomonas fluorescens Pf-5 by using a genomic mining strategy. Appl. Environ. Microbiol. 74:3085-3093. https://doi.org/10.1128/AEM.02848-07
- Lu, S.-E., Noval, J., Austin, F. W., Gu, G., Ellis, D., Kirk, M., Wilson- Stanford, S., Tonelli, M. and Smith, L. 2009. Occidiofungin, a unique antifungal glycopeptides produced by a strain of Burkholderia contaminans. Biochemistry 48:8312-8321. https://doi.org/10.1021/bi900814c
- Mahenthiralingam, E., Urban, T. A. and Goldberg, J. B. 2005. The multifarious, multireplicon Burkholderia cepacia complex. Nat. Rev. Microbiol. 3:144-156. https://doi.org/10.1038/nrmicro1085
- Mao, W., Lumsden, R. D., Lewis, J. A. and Hebbar, P. K. 1998. Seed treatment using pre-infiltration and biocontrol agents to reduce damping-off of corn caused by species of Pythium and Fusarium. Plant Dis. 82:294-299. https://doi.org/10.1094/PDIS.1998.82.3.294
- Mavrodi, D. V., Blankenfeldt, W. and Thomashow, L. S. 2006. Phenazine compounds in fluorescent Pseudomonas spp. biosynthesis and regulation. Annu. Rev. Phytopathol. 44:417-445. https://doi.org/10.1146/annurev.phyto.44.013106.145710
- McLoughlin, T. J., Quinn, J. P., Bettermann, A. and Bookland, R. 1992. Pseudomonas cepacia suppression of sunflower wilt fungus and role of antifungal compounds in controlling the disease. Appl. Environ. Microbiol. 58:1760-1763.
- Meyers, E., Bisacchi, G. S., Dean, L., Liu, W. C., Minassian, B., Slusarchyk, D. S., Sykes, R. B., Tanaka, S. K. and Trejo, W. 1987. Xylocandin: a new complex of antifungal peptides. I. Taxonomy, isolation and biological activity. J. Antibiot. 40: 1515-1519. https://doi.org/10.7164/antibiotics.40.1515
- Munier-Lehmann, H., Chenal-Francisque, V., Ionescu, M., Chrisova, P., Foulon, J., Carniel, E. and Bârzu, O. 2003. Relationship between bacterial virulence and nucleotide metabolism: a mutation in the adenylate kinase gene renders Yersinia pestis avirulent. Biochem. J. 373:515-522. https://doi.org/10.1042/BJ20030284
- Ongena, M. and Jacques, P. 2008. Bacillus lipopeptides: versatile weapons for plant disease control. Trends Microbiol. 16:115- 125. https://doi.org/10.1016/j.tim.2007.12.009
- Parke, J. L., Rand, R. E., Joy, A. E. and King, E. B. 1991. Biological control of Pythium-damping off and Aphanomyces root rot of peas by application of Pseudomonas cepacia or Pseudomonas fluorescens to seed. Plant Dis. 75:987-992. https://doi.org/10.1094/PD-75-0987
- Parker, J. L. and Gurian-Sherman, D. 2001. Diversity of the Burkholderia cepacia complex and implications for risk assessment of biological control strains. Annu. Rev. Phytopathol. 39:225-258. https://doi.org/10.1146/annurev.phyto.39.1.225
- Roberts, D. P., Lohrke, S. M., Meyer, S. L. F., Buyer, J. S., Bowers, J. H., Baker, C. J., Li, W., De Souza, J. T., Lewis, J. A. and Chung, S. 2005. Biocontrol agents applied individually and in combination for suppression of soilborn diseases of cucumber. Crop Prot. 24:141-155. https://doi.org/10.1016/j.cropro.2004.07.004
- Romero-Tabarez, M., Jansen, R., Sylla, M., Luensdorf, H., Huessler, S., Santosa, D. A., Timmis, K. N. and Molinari, G. 2006. 7-O-Malonyl macrolactin A, a new macrolactin antibiotic from Bacillus subtilis active against methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococci and a small-colony variant of Burkholderia cepacia. Antimicrob. Agents Chemother. 50:1701-1709. https://doi.org/10.1128/AAC.50.5.1701-1709.2006
- Rondon, M. R., Ballering, K. S. and Thomas, M. G. 2004. Identification and analysis of a siderophore biosynthetic gene cluster from Agrobacterium tumefaciens C58. Microbiology 150: 3857-3866. https://doi.org/10.1099/mic.0.27319-0
- Ruffin, D. C., Van Santen, V. L., Zhang, Y., Voelker, L. L., Panangala, V. S. and Dybvig, K. 2000. Transposon mutagenesis of Mycoplasma gallisepticum by conjugation with Enterococcus faecalis and determination of insertion site by direct genomic sequencing. Plasmid 44:191-195. https://doi.org/10.1006/plas.2000.1485
- Sambrook, J., Fritsch, E. F. and Maniatis, T. 1989. Molecular cloning; a laboratory manual, 3rd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA.
- Santos, A. V., Dillon, R. J., Dillon, V. M., Reynolds, S. E. and Samuels, R. I. 2004. Ocurrence of the antibiotic producing bacterium Burkholderia sp. in colonies of the leaf-cutting ant Atta sexdens rubropilosa. FEMS Microbiol. Lett. 239:319- 323. https://doi.org/10.1016/j.femsle.2004.09.005
- Simon, R., Priefer, U. and Pühler, A. 1983. A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. Bio/Technology 1:784-795. https://doi.org/10.1038/nbt1183-784
- Sokol, P. A., Lewis, C. J. and Dennis, J. J. 1992. Isolation of a novel siderophore from Pseudomonas cepacia. J. Med. Microbiol. 36:184-189. https://doi.org/10.1099/00222615-36-3-184
Cited by
- Draft Genome Sequence of Burkholderia pyrrocinia Lyc2, a Biological Control Strain That Can Suppress Multiple Plant Microbial Pathogens vol.2, pp.5, 2014, https://doi.org/10.1128/genomeA.00991-14
- Molecular Docking Evaluation of (E)-5-arylidene-2-thioxothiazolidin-4-one Derivatives as Selective Bacterial Adenylate Kinase Inhibitors vol.23, pp.5, 2018, https://doi.org/10.3390/molecules23051076