DOI QR코드

DOI QR Code

Anti-inflammatory Effect of Allium hookeri Root Methanol Extract in LPS-induced RAW264.7 Cells

삼채 뿌리 메탄올 추출물이 LPS가 유도된 RAW264.7 세포에 대한 항염증 효과

  • Received : 2012.09.04
  • Accepted : 2012.09.19
  • Published : 2012.11.30

Abstract

Allium hookeri, a member of the onion family, has long been mainly cultivated for food and medicinal use in Southeast Asia countries owing to its various biological properties. However, no studies of the anti-inflammatory effects of A. hookeri extracts have been conducted to date. Therefore, this study was investigated the potential of the methanol extract of A. hookeri to suppress the inflammation in lipopolysaccharide (LPS)-induced mouse macrophage RAW264.7 cells. This study was performed on macrophage cells that were pretreated with $0{\sim}500{\mu}g/mL$ of methanol extract of A. hookeri root prior to LPS treatment. Treatment with methanol extract of A. hookeri root significantly inhibited LPS-induced nitric oxide formation in dose-dependent manner. Treatment of A. hookeri root also significantly decreased LPS-induced TNF-${\alpha}$ and IL-6 production. The results of this study provide new evidence of the anti-inflammatory properties of A. hookeri and indicate that it may have a potential therapeutic use for the prevention and treatment of macrophage derived chronic immune diseases.

본 연구에서는 삼채 뿌리 메탄올 추출물의 항염증 효과를 확인하기 위하여 마우스 대식세포인 RAW264.7 세포에 LPS를 처리한 결과 세포 생존율은 다양한 농도의 삼채 뿌리 메탄올 추출물에서 세포독성이 없는 것으로 나타났다. 삼채 뿌리 메탄올 추출물은 다양한 농도에서 LPS만을 처리한 대조군과 비교하였을 때, NO 생성을 농도 의존적으로 감소시키는 것으로 확인되었다. 또한 염증성 사이토카인인 TNF-${\alpha}$와 IL-6의 생성양 역시 LPS만을 처리한 군과 비교했을 때, 각각의 농도에서 농도의존적으로 감소하는 경향을 보였다. 본 연구에 사용된 삼채 뿌리 메탄올 추출물의 염증 억제 기작에 관한 추가적인 연구의 수행과 활성물질의 동정에 관한 연구가 추가로 이루어져야겠지만, 본 연구의 결과는 삼채 뿌리 메탄올 추출물은 NO 및 염증성 사이토카인의 생성을 조절함으로써 대식세포 유래의 염증 반응을 효과적으로 억제하고, 염증성 매개질환에 탁월한 효능이 있을 것으로 사료되며, 예방물질로서 활용될 수 있을 것으로 기대된다.

Keywords

References

  1. Ayam VS. 2011. Allium Hookeri , Thw. Enum. A lesser known terrestrial perennial herb used as food and its ethnobotanical relevance in Manipur. Afr J Food Agric Nutr Dev 11: 5389-5412.
  2. Hsu CC, Huang CN, Hung YC, Yin MC. 2004. Five cysteine-containing compounds have amtioxidative activity in Balb/cA mice. J Nutr 134: 149-152.
  3. Welch C, Wuarin L, Sidell N. 1992. Antiproliferative effect of the garlic compound S-allyl cysteine on human neuroblastoma cells in vitro. Cancer Lett 63: 211-219. https://doi.org/10.1016/0304-3835(92)90263-U
  4. Kim KH, Kim HJ, Byun MW, Yook HS. 2012. Antioxidant and antimicrobial activities of ethanol extract from six vegetables containing different sulfur compounds. J Korean Soc Food Sci Nutr 41: 577-583. https://doi.org/10.3746/jkfn.2012.41.5.577
  5. Banerjee SK, Maulik SK. 2002. Effect of garlic on cardiovascular disorders: a review. Nutr J 1: 4. https://doi.org/10.1186/1475-2891-1-4
  6. Vazquez-Prieto MA, Miatello RM. 2010. Organosulfur compounds and cardiovascular disease. Mol Aspects Med 31: 540-545. https://doi.org/10.1016/j.mam.2010.09.009
  7. Keusgen M. 2002. Health and alliums. In Allium Crop Science-Recent Advances. CABI, Wallingford, UK. p 357-378.
  8. de Heredia FP, Gomez-Martinez S, Marcos A. 2012. Obesity, inflammation and the immune system. Proc Nutr Soc 71: 332-338. https://doi.org/10.1017/S0029665112000092
  9. Osborn O, Olefsky JM. 2012. The cellular and signaling networks linking the immune system and metabolism in disease. Nat Med 18: 363-374. https://doi.org/10.1038/nm.2627
  10. Mann JR, Backlund MG, DuBois RN. 2005. Mechanism of disease: Inflammatory mediators and cancer prevention. Nat Clin Pract Oncol 2: 202-210.
  11. Guzik TJ, Korbut R, Adamek-Guzik T. 2003. Nitric oxide and superoxide in inflammation and immune regulation. J Physiol Phamacol 43: 469-487.
  12. Bosca L, Zeini M, Traves PG, Hortelano S. 2005. Nitric oxide and cell viability in inflammatory cells: a role for NO in macrophage function and fate. Toxicology 208: 249-258. https://doi.org/10.1016/j.tox.2004.11.035
  13. Ide N, Lau BH. 2001. Garlic compounds minimize intracellular oxidative stress and inhibit nuclear factor-${\kappa}B$ activation. J Nutr 131: 1020S-1026S.
  14. Nathan C. 1992. Nitric oxide as a secretory product of mammalian cells. FASEB J 6: 3051-3064.
  15. Kleemann R, Verschuren L, Morrison M, Zadelaar S, van Erk MJ, Wielinga PY, Kooistra T. 2011 Antiinflammatory, anti-proliferative and anti-atherosclerotic effects of quercetin in human in vitro and in vivo medels. Atherosclerosis 218: 44-52. https://doi.org/10.1016/j.atherosclerosis.2011.04.023
  16. Rivera L, Morón R, Sanchez M, Zarzuelo A, Galisteo M. 2008. Quercetin ameliorates metabolic syndrome and improves the inflammatory status in obese Zucker rats. Obesity 16: 2081-2087. https://doi.org/10.1038/oby.2008.315
  17. Sprague AH, Khalil RA. 2009. Inflammatory cytokines in vascular dysfunction and vascular disease. Biochem Pharmacol 78: 539-52. https://doi.org/10.1016/j.bcp.2009.04.029
  18. Lee EN, Choi YW, Kim HK, Park JK, Kim HJ, Kim MJ, Lee HW, Kim KH, Bae SS, Kim BS, Yoon S. 2011. Chloroform extract of aged black garlic attenuates TNF-${\alpha}$-induced ROS generation, VCAM-1 expression, NF-${\kappa}B$ activation and adhesiveness for monocytes in human umbilical vein endothelial cellls. Phytother Res 25: 92-100. https://doi.org/10.1002/ptr.3230
  19. Rassoul F, Salvetter J, Reissig D, Schneider W, Thiery J, Richter V. 2006. The influence of garlic (Allium sativum) extract on interleukin 1a-induced expression of endothelial intercelluar adhesion molecule-1 and vascular cell adhesion molecule-1. Phytomedicine 13: 230-235. https://doi.org/10.1016/j.phymed.2005.01.010
  20. Park SH, Kim JI, Jeong YK, Choi YH. 2011. Extracts of Allium fistulosum attenuates pro-inflammatory action in the lipopolysaccharide-stimulated BV2 microglia cells. J Life Sci 21: 796-804. https://doi.org/10.5352/JLS.2011.21.6.796

Cited by

  1. Quality Characteristics of Wet Noodles with Allium hookeri Powder vol.45, pp.1, 2016, https://doi.org/10.3746/jkfn.2016.45.1.084
  2. Quality characteristics of kimchi with Allium hookeri root powder added vol.20, pp.6, 2013, https://doi.org/10.11002/kjfp.2013.20.6.863
  3. Quality Characteristics of Seasoned Pork with Water Extracts of Allium hookeri Root during Storage vol.44, pp.2, 2015, https://doi.org/10.3746/jkfn.2015.44.2.242
  4. High-frequency Plant Regeneration from Cultured Flower Bud Receptacles of Allium hookeri L. vol.32, pp.5, 2014, https://doi.org/10.7235/hort.2014.14023
  5. Effect of Starter Cultures on the Antioxidant Activities of Allium hookeri Root-Hot Water Extract vol.31, pp.1, 2015, https://doi.org/10.9724/kfcs.2015.31.1.098
  6. Anti-Inflammatory Effect of Ethanol Extract from Onion (Allium cepa L.) Peel on Lipopolysaccharide-Induced Inflammatory Responses in RAW 264.7 Cells and Mice Ears vol.44, pp.11, 2015, https://doi.org/10.3746/jkfn.2015.44.11.1612
  7. Antioxidant Activity of Allium hookeri Root Extract and Its Effect on Lipid Stability of Sulfur-fed Pork Patties vol.35, pp.1, 2015, https://doi.org/10.5851/kosfa.2015.35.1.41
  8. Quality Characteristics and Storage Stability of Bread with Allium hookeri Powder vol.27, pp.2, 2014, https://doi.org/10.9799/ksfan.2014.27.2.318
  9. Protective Effects of Ethanol Extract of Allium hookeri Root on Acute Alcohol-Induced Intoxication in ICR Mice vol.45, pp.5, 2016, https://doi.org/10.3746/jkfn.2016.45.5.625
  10. Anti-Inflammatory Activity of Pinus koraiensis Cone Bark Extracts Prepared by Micro-Wave Assisted Extraction vol.21, pp.3, 2016, https://doi.org/10.3746/pnf.2016.21.3.236
  11. The Hypolipidemic Effect of Allium Hookeri in Rats Fed with a High Fat Diet vol.27, pp.1, 2016, https://doi.org/10.7856/kjcls.2016.27.1.137
  12. Dietary Allium hookeri reduces inflammatory response and increases expression of intestinal tight junction proteins in LPS-induced young broiler chicken vol.112, 2017, https://doi.org/10.1016/j.rvsc.2017.03.019
  13. Comparison of the Nutrient Composition and Quality of the Root of Allium hookeri Grown in Korea and Myanmar vol.46, pp.5, 2014, https://doi.org/10.9721/KJFST.2014.46.5.544
  14. Quality Characteristics of Kimchi Added with Allium hookeri Root vol.42, pp.10, 2013, https://doi.org/10.3746/jkfn.2013.42.10.1649
  15. Antioxidant and anti-inflammatory properties of extracts from Allium hookeri root vol.22, pp.6, 2015, https://doi.org/10.11002/kjfp.2015.22.6.867
  16. Evaluation of antioxidant, α-glucosidase inhibition and acetylcholinesteraseinhibition activities of Allium hookeri root grown in Korea and Myanmar vol.23, pp.2, 2016, https://doi.org/10.11002/kjfp.2016.23.2.239
  17. Allium hookeri root extract exerts anti-inflammatory effects by nuclear factor-κB down-regulation in lipopolysaccharide-induced RAW264.7 cells vol.17, pp.1, 2017, https://doi.org/10.1186/s12906-017-1633-3
  18. Effect of Addition of Allium hookeri on the Quality of Fermented Sausage with Meat from Sulfur Fed Pigs during Ripening vol.34, pp.3, 2014, https://doi.org/10.5851/kosfa.2014.34.3.263
  19. Biological Activities of Yellow Garlic Extract vol.44, pp.7, 2015, https://doi.org/10.3746/jkfn.2015.44.7.983
  20. Comparative Evaluation of Sulfur Compounds Contents and Antiobesity Properties of Allium hookeri Prepared by Different Drying Methods vol.2017, 2017, https://doi.org/10.1155/2017/2436927
  21. In Vitro Analysis of the Immunomodulating Effects of Allium Hookeri on Lymphocytes, Macrophages, and Tumour Cells vol.54, pp.2, 2017, https://doi.org/10.2141/jpsa.0160108
  22. Chemical Components, DPPH Radical Scavenging Activity and Inhibitory Effects on Nitric Oxide Production in Allium hookeri Cultivated under Open Field and Greenhouse Conditions vol.42, pp.9, 2013, https://doi.org/10.3746/jkfn.2013.42.9.1351
  23. Total Phenolics, Total Flavonoids, and Antioxidant Capacity in the Leaves, Bulbs, and Roots of Allium hookeri vol.47, pp.2, 2015, https://doi.org/10.9721/KJFST.2015.47.2.261
  24. Comparison of Effect of Water and Ethanolic Extract from Roots and Leaves of Allium hookeri vol.43, pp.12, 2014, https://doi.org/10.3746/jkfn.2014.43.12.1808
  25. Characterization of alkyl thiosulfinate in Allium hookeri root using HPLC-ESI-MS vol.56, pp.4, 2013, https://doi.org/10.1007/s13765-013-3069-x
  26. Physiological Activities of Ethanol Extracts from Different Parts of Allium hookeri vol.28, pp.2, 2015, https://doi.org/10.9799/ksfan.2015.28.2.295
  27. Anti-inflammation effect of rebaudioside A by inhibition of the MAPK and NF-κB signal pathway in RAW264.7 macrophage vol.61, pp.2, 2018, https://doi.org/10.3839/jabc.2018.030
  28. extract vol.34, pp.2, 2018, https://doi.org/10.5625/lar.2018.34.2.75
  29. Modulation of gastrointestinal barrier and nutrient transport function in farm animals by natural plant bioactive compounds – A comprehensive review pp.1549-7852, 2018, https://doi.org/10.1080/10408398.2018.1486284
  30. Antimicrobial Constituents from Allium Hookeri Root vol.11, pp.2, 2012, https://doi.org/10.1177/1934578x1601100226
  31. 중부지역 뿌리부추 하우스 재배 시 차광 정도가 생육 및 수량에 미치는 영향 vol.25, pp.4, 2012, https://doi.org/10.12791/ksbec.2016.25.4.320
  32. Allium Hookeri Extract Enhances Glucose Uptake through GLUT4 Up-regulation in 3T3-L1 Cells vol.27, pp.3, 2012, https://doi.org/10.5352/jls.2017.27.3.289
  33. 삼채 뿌리 보충식이가 당뇨 흰쥐의 조직에서 항산화효소 활성도에 미치는 영향 vol.28, pp.3, 2012, https://doi.org/10.17495/easdl.2018.6.28.3.179
  34. The effects of Allium hookeri on the physicochemical characteristics and storage of pork sausage vol.26, pp.5, 2012, https://doi.org/10.11002/kjfp.2019.26.5.466
  35. Allium hookeri Root Extract Inhibits Adipogenesis by Promoting Lipolysis in High Fat Diet-Induced Obese Mice vol.11, pp.10, 2019, https://doi.org/10.3390/nu11102262
  36. Analysis of Physiological Activity and Cytotoxicity of Fermented and Hot Water Extracts Using Residues after Sweet Potato (Ipomoea batatas L.) Harvest vol.53, pp.5, 2019, https://doi.org/10.14397/jals.2019.53.5.93
  37. Safety and Physicochemical Activities of Allium Hookeri vol.17, pp.4, 2012, https://doi.org/10.20402/ajbc.2019.0332
  38. Effects of Allium hookeri  on gut microbiome related to growth performance in young broiler chickens vol.15, pp.1, 2012, https://doi.org/10.1371/journal.pone.0226833
  39. Influence of Plant Bioactive Compounds on Intestinal Epithelial Barrier in Poultry vol.20, pp.7, 2020, https://doi.org/10.2174/1389557520666191226111405
  40. The validation of HPLC analytical method for Allium hookeri Thwaites and Curcuma longa complex extract as functional ingredients vol.27, pp.3, 2012, https://doi.org/10.11002/kjfp.2020.27.3.356
  41. 삼채(三菜) 물추출물이 RAW 264.7 세포의 항산화 및 염증반응에 미치는 영향 vol.35, pp.4, 2012, https://doi.org/10.6116/kjh.2020.35.4.37.
  42. 한약복합추출물(NI-01)의 항염증 및 소양감 억제 효과 vol.34, pp.6, 2012, https://doi.org/10.15188/kjopp.2020.12.34.6.341
  43. 고추 수확 후 잔재물 추출물의 생리활성과 세포독성 분석 vol.30, pp.12, 2012, https://doi.org/10.5352/jls.2020.30.12.1085
  44. Antioxidant and Anti-Inflammatory Effects of Merin Beet Sprout Extract vol.50, pp.9, 2012, https://doi.org/10.3746/jkfn.2021.50.9.921