DOI QR코드

DOI QR Code

Physiological Characteristics of Starter Isolated from Kimchi and Fermentation of Tofu with Isolated Starter

발효두부 제조용 Starter의 선발과 이를 이용한 두부의 발효특성

  • Kang, Kyoung Myoung (Dept. Food Science and Technology, Catholic University of Daegu) ;
  • Lee, Shin Ho (Dept. Food Science and Technology, Catholic University of Daegu)
  • 강경명 (대구가톨릭대학교 식품가공학과) ;
  • 이신호 (대구가톨릭대학교 식품가공학과)
  • Received : 2012.07.04
  • Accepted : 2012.09.03
  • Published : 2012.11.30

Abstract

Sixty strains of lactic acid bacteria were isolated from kimchi and used as a starter for fermented tofu. Among the isolated strains, strain KL-6 showed antimicrobial activity against various pathogens, antioxidative activity, and viability in artificial gastric juice and artificial bile acid. The selected strain KL-6 was identified as Pediococcus acidilactici KL-6 by morphological and physiological tests, including Gram staining, catalase test, and 16S rRNA sequencing. The fermentation characteristics of tofu with a kimchi ingredient mixture (Control) consisting of red pepper, garlic, ginger, sugar, salt, jeotgal, and juice of chinese cabbage were compared with those of tofus inoculated with strain KL-6 and the kimchi ingredient mixture (TL) or a pre-fermented kimchi ingredient mixture (TPL) for 24 hr at $37^{\circ}C$. The pH levels of all tested tofu samples decreased after 1 week of fermentation, reaching 3.96 (control), 3.97 (TL), and 4.03 log cfu/g (TPL) after fermentation for 14 weeks at $20^{\circ}C$. Total aerobe content of fermented tofu increased until 2 weeks of fermentation, but decreased steadily thereafter. The number of lactic acid bacteria reached $10^6$ cfu/g after 1 week of fermentation in TL and TPL, whereas it took 2 weeks for the control. The number of lactic acid bacteria in all tested tofu samples reached $10^3$ cfu/g after 14 weeks of fermentation at $20^{\circ}C$. Coliform bacteria were not detected in TL or TPL after 1 week of fermentation. The sensory scores of TL and TPL were higher than that of control in terms of taste, flavor, texture, and overall acceptability. The sensory quality of TPL was the best among all tested fermented tofu samples.

김치 및 젓갈류에서 probiotics의 기능을 갖는 유산균을 분리하여 발효두부 제조용 starter로 선별하여 김치양념을 이용한 발효두부 제조 가능성을 검토하였다. 분리한 60균주의 병원성균에 대한 항균활성과 인공위액 및 담즙산에 대한 내성이 우수한 균주 KL-6를 선발하였다. 최종 선발된 KL-6의 배양액의 DPPH free radical 소거능을 측정한 결과 성장에 따라 항산화 활성이 증가하였고, 16S rRNA 염기서열 분석에 의해 동정한 결과 P. acidilactici KL-6(100%)로 확인되었다. 김치 양념과 혼합한 두부(Control)와 선발유산균을 starter로 접종(2%, v/v)하여 김치 양념과 혼합한 두부(TL) 그리고 starter를 접종하여 $37^{\circ}C$에서 24시간 동안 전 발효시킨 김치 양념과 혼합한 두부(TPL)의 발효 특성을 비교하였다. pH는 발효 1주 경과 후 모든 처리구에서 감소하였고, 발효 14주에 각 처리구별 pH는 3.96(control), 3.97(TL), 4.03(TPL)이었다. 유산발효두부의 총균수는 발효 2주까지 모든 처리구에서 증가하였으며, 이후 감소하는 경향을 나타내었다. 유산균수의 경우 TL 및 TPL구는 발효 1주째, 대조구는 발효 2주째 $10^6$ CFU/g에 도달하였으며, 발효가 진행됨에 따라 각 처리구 공히 감소하여 발효 14주째 $10^3$ CFU/g을 나타내었다. 대장균군수의 경우 대조구는 발효 1주일째까지 관찰되었으나, TL및 TPL구는 발효 1주째부터 관찰되지 않았다. 기호성은 TL구와 TPL구가 맛, 향, 조직감, 종합적 기호도에서 대조구보다 높았으며, TPL구가 가장 우수하였다.

Keywords

References

  1. Tannock GW. 1997. Probiotic properties of lactic-acid bacteria: plenty of scope for fundamental R&D. Trends Biotechnol 15: 270-274. https://doi.org/10.1016/S0167-7799(97)01056-1
  2. Fuller R. 1989. Probiotics in man and animals. J Appl Bacteriol 66: 365-378. https://doi.org/10.1111/j.1365-2672.1989.tb05105.x
  3. Fuller R. 1991. Probiotics in human medicine. Gut 32: 439-442. https://doi.org/10.1136/gut.32.4.439
  4. Takiguchi R, Mochizuki E, Suzuki Y, Nakajima I, Benno Y. 1997. Lactobacillus acidophilus SBT 2928 on harmful intestinal bacteria. J Int Microbiol 11: 11-17.
  5. Koo SM, Cho YH, Huh CS, Beak YJ, Park JY. 2001. Improvement of the stability of Lactobacillus casei YIT 9018 by microencapsulation using alginate and chitosan. J Microbiol Biotechnol 11: 376-383.
  6. Cambell GL, Bedford MR. 1992. Enzyme applications for monogastric feeds: a review. Can J Anim Sci 72: 449-466. https://doi.org/10.4141/cjas92-058
  7. Smith AK, Cirrcle ST. 1978. Soybean chemistry and technology. Avi Publishing Co., Westport, CT, USA. p 410.
  8. Reddy NR. 1986. Legume-based fermented foods. CRC press, Inc., Boca Raton, FL, USA. p 69.
  9. Wang HL, Hesseltine CW. 1970. Sufu and lao-chao. J Agr Food Chem 18: 572-575. https://doi.org/10.1021/jf60170a046
  10. Kim TY, Kim JM, Yoon IH, Chang CM. 1994. Changes in chemical components of soybean cheese making from cow's milk added soybean curd. J Korean Soc Food Nutr 23: 837-844.
  11. Kim GH, Lee YH. 1981. Changes of chemical components on soaking fermentation in soybean cheese. Korea J Appl Microbiol Biotechnol 9: 153-158.
  12. Park KH, Kim ZU. 1980. Preparation of cheese like product from soybean. J Korean Agric Chem Soc 23: 115-121.
  13. Lee SH, Kim YT, Shon MY, Sung CK, Park SK. 2001. Quality properties of fermented tofu prepared with different molds and coagulants. J Korean Soc Food Sci Nutr 30: 617-622.
  14. Kobayashi Y, Tohyama K, Terashima T. 1974. Tolerance of the multiple antibiotic resistant strain L. casei SPR 3002 to artificial digestive fluids. Jpn J Microbiol 29: 691-697.
  15. Lee SH, No MJ. 1997. Viability in artificial gastric and bile juice and antimicrobial activity of some lactic acid bacteria isolated from Kimchi. Kor J Appl Microbiol Biotechnol 6: 617-622.
  16. Blois MS. 1958. Antioxidant determination by the use of a stable free radical. Nature 26: 1199-1200.
  17. Aguirre M, Collins MD. 1993. Lactic acid bacteria and human clinical infection. J Appl Bacteriol 75: 95-107. https://doi.org/10.1111/j.1365-2672.1993.tb02753.x
  18. Gilliland SE, Staley TE, Bush LJ. 1984. Importance of bile tolerance of Lactobacillus acidophilus used as a dietary adjunct. J Dairy Sci 67: 3045-3051. https://doi.org/10.3168/jds.S0022-0302(84)81670-7
  19. Paik HD, Jung MY, Jung HY, Kim WS, Kim KT. 2002. Characterization of Bacillus polyfermenticus SCD for oral bacteriotherapy of gastrointestinal disorders. Korean J Food Sci Technol 34: 73-78.
  20. Chung YC, Chang CT, Chao WW, Lin CF, Chou ST. 2002. Antioxidative acitivity and safety of the 50 ethanol extract from red bean fermented by Bacillus subtilis IMR-NK1. J Agric Food Chem 50: 2454-2458. https://doi.org/10.1021/jf011369q
  21. Joo JC, Shin JH, Lee SJ, Cho HS, Sung NJ. 2006. Antioxidative activity of hot water extracts from medicinal plants. J Korean Soc Food Sci Nutr 35: 7-14. https://doi.org/10.3746/jkfn.2006.35.1.007
  22. Lin MY, Yen CL. 1999. Reactive oxygen species and lipid peroxidation product-scavenging ability of yogurt organisms. J Dairy Sci 82: 1629-1634. https://doi.org/10.3168/jds.S0022-0302(99)75391-9
  23. Lim JS, Cho EJ. 2005. The physicochemical characteristics of silk-tofu added with medicinal herb powder preserved in kochujang and deonjang (tofujang). Korean J Food Cookery Sci 21: 447-458.
  24. Jung KO. 1994. Effect of taking effect which reaches in kimchi public opinion inside of the hall pathogenic bacteria multiplication. MS Thesis. Dongguk University, Seoul, Korea.

Cited by

  1. Lactic Acid Bacterial Starter Culture with Antioxidant andγ-Aminobutyric Acid Biosynthetic Activities Isolated from Flatfish-SikhaeFermentation vol.18, pp.12, 2015, https://doi.org/10.1089/jmf.2015.3458
  2. Changes of Antioxidant Activity and the Isoflavone and Free Amino Acid Content of Fermented Tofu with Kimchi Ingredients and Lactic Acid Bacteria vol.42, pp.1, 2013, https://doi.org/10.3746/jkfn.2013.42.1.096
  3. Potential Probiotic Lactobacillus plantarum P1201 to Produce Soy-yogurt with Enhanced Antioxidant Activity vol.46, pp.5, 2014, https://doi.org/10.9721/KJFST.2014.46.5.556
  4. Quality Characteristics of Vegan Nutritional Bars with Fermented Soybean Curd Residue Powder vol.50, pp.8, 2012, https://doi.org/10.3746/jkfn.2021.50.8.849