DOI QR코드

DOI QR Code

Antioxidant Activities of Volatile Aroma Components from Cudrania tricuspidata (Carr.) Bureau Extracts

꾸지 뽕나무 휘발성 향기성분의 항산화활성

  • Ko, Keun Hee (Sanchung Oriental Medicinal Herb Institute) ;
  • Nam, Sanghae (Division of Food Science, Gyeongnam National University of Science and Technology)
  • 고건희 ((재)산청한방약초연구소) ;
  • 남상해 (경남과학기술대학교 식품과학부)
  • Received : 2012.07.13
  • Accepted : 2012.08.22
  • Published : 2012.11.30

Abstract

The antioxidant activities of volatile aroma extracts from Cudrania tricuspidata (Carr.) Bureau were examined using two antioxidant assays. Ten volatile aroma compounds identified in this plant were also tested for antioxidant activity. The volatile aroma extracts of stem and root from C. tricuspidata exhibited antioxidant activities with a clear dose response relationship in both aldehyde/carboxylic acid and lipid/malonaldehyde assays. Antioxidant activities of volatile aroma extracts from C. tricuspidata at $500{\mu}g/mL$ were $77.02{\pm}8.12%$ (stem) and $74.19{\pm}6.82%$ (root) in the aldehyde/carboxylic acid assay. Antioxidant activities of volatile aroma extracts from C. tricuspidata at $160{\mu}g/mL$ were $76.17{\pm}4.25%$ (stem) and $61.43{\pm}2.11%$ (root) in the lipid/malonaldehyde assay. Positively identified volatile aroma components in extracts of stem and root from C. tricuspidata were seven terpenes and terpenoides, 14 alkyl compounds, 11 nitrogen containing heterocyclic compounds, three oxygen containing heterocyclic compounds, 12 aromatic compounds, nine lactones, and seven miscellaneous compounds (possible contaminants). Among the positively identified compounds, eugenol, isoeugenol, and 2,4-bis (1,1-dimethylethyl)phenol exhibited antioxidant activities comparable to those of BHT and ${\alpha}$-tocopherol. Vanillin and 2-acetylpyrrole showed moderate activities in the lipid/malonaldehyde assay. These results suggest that consumption of antioxidant-rich beverages prepared from C. tricuspidata could have beneficial effects on human health by preventing diseases caused by oxidative damage.

꾸지 뽕나무(C. tricuspidata)의 휘발성 향기추출물의 항산화활성을 2 가지의 시험방법을 이용하여 측정하였다. 그리고 꾸지 뽕나무의 향기추출물에서 동정된 10종의 휘발성 향기성분에 대한 항산화활성도 측정하였다. 꾸지 뽕나무의 줄기 및 뿌리 향기추출물들은 2가지 실험법에서 모두 뚜렷하게 처리농도에 비례하여 항산화활성을 나타내었다. 즉 aldehyde/carboxylic acid assay에서 $500{\mu}g/mL$의 농도로 처리하였을 때, 줄기와 뿌리의 향기추출물은 각각 $77.02{\pm}8.12%$$74.19{\pm}6.82%$의 항산화활성을 나타내었으며, lipid/malonaldehyde assay에서 $160{\mu}g/mL$의 농도로 처리하였을 때, 줄기 및 뿌리의 향기추출물은 각각 $61.43{\pm}2.11$$76.17{\pm}4.25%$의 항산화활성을 나타내었다. 꾸지 뽕나무의 향기추출물에서 동정된 향기성분들은 7종의 terpenes and terpenoides, 14종의 alkyl compounds, 11종의 nitrogen containing heterocyclic compounds, 3종의 oxygen containing heterocyclic compounds, 12종의 aromatic compounds, 9종의 lactones와 7종의 miscellaneous compounds였다. 꾸지 뽕나무의 향기추출물에서 동정된 향기성분들 중에서 eugenol, isoeugenol 및 2,4-bis(1,1-dimethylethyl)phenol은 lipid/malonaldehyde assay에서 $160{\mu}g/mL$의 농도로 처리하였을 때, 각각 $91.74{\pm}1.33$, $94.00{\pm}0.59$$91.22{\pm}4.74%$의 항산화활성을 나타내었다. 이는 동일한 방법에서 BHT와 ${\alpha}$-tocopherol의 항산화활성이 각각 $91.90{\pm}0.42%$$89.47{\pm}3.04%$인 것과 비슷한 수준이었다. 한편 동일한 처리농도에서 vanillin과 2-acetylpyrrole은 각각 $63.36{\pm}5.83$$58.62{\pm}6.83%$로서 중간 정도의 항산화활성을 나타내었다. 따라서 꾸지 뽕나무는 산화적 손상으로 인한 질병의 예방과 사람들의 건강에 도움을 줄 수 있을 것으로 생각되었다.

Keywords

References

  1. Lee CB. 1985. Daehanshikmuldogam. Hyangmoonsha, Seoul, Korea. p 285.
  2. Chen F, Nakashima N, Kimura I, Kimura M. 1995. Hypoglycemic activity and mechanisms of extracts from mulberry leaves (folium mori) and cortex mori radicis in streptozotocin-induced diabetic mice. Yakugaku Zasshi 115: 476-482. https://doi.org/10.1248/yakushi1947.115.6_476
  3. Kim SY, Ryu KS, Lee WC, Ku HO, Lee HS, Lee KR. 1999. Hypoglycemic effect of mulberry leaves with anaerobic treatment in alloxan-induced diabetic mice. Kor J Pharmacogn 30: 123-129.
  4. Jang IM. 2003. Treatise on Asian herbal medicines. Institute of Natural Products Science, Seoul National University Press, Seoul, Korea. p 7.
  5. Hano Y, Matsumoto Y, Sun JY, Nomura T. 1990. Structures of four new isoprenylated xanthones, cudraxanthones H, I, J, and K. Planta Med 56: 478-481. https://doi.org/10.1055/s-2006-961016
  6. Hano Y, Matsumoto Y, Sun JY, Nomura T. 1991. Structures of four new isoprenylated xanthones, cudraxanthones L, M, N, and O from Cudrania tricuspidata. Planta Med 57: 172-175. https://doi.org/10.1055/s-2006-960059
  7. Kim SH, Kim NJ, Choi JS, Park JC. 1993. Determination of flavonoid by HPLC and biological activities from the leaves of Cudrania tricuspidata Bureau. J Korean Soc Food Nutr 22: 68-72.
  8. Lee IK, Kim CJ, Song KS, Kim HM, Kosino H, Uramoto M, Yoo ID. 1996. Cytotoxic benzyl dihydroflavonols from Cudrania tricuspidata. Phytochemistry 41: 213-216. https://doi.org/10.1016/0031-9422(95)00609-5
  9. Kang DG, Hur TY, Lee GM, Oh HC, Kwon TO, Sohn EJ, Lee HS. 2002. Effects of Cudrania tricuspidata water extract on blood pressure and renal functions in NO-dependent hypertension. Life Sci 70: 2599-2609. https://doi.org/10.1016/S0024-3205(02)01547-3
  10. Cha JY, Cho YS. 2001. Effect of stem bark extract from Morus alba and Cudrania tricuspidata on the concentrations of lipid and tissue lipid periodation in the cholesterol- fed rats. Korean J Food Sci Technol 33: 128-134.
  11. Choi JH, Kim DI, Park SH, Kim DW, Lee JS, Kim HS. 1999. Investigation of anti-aging effect and determination of chemical structures of pine needle extract (PNE) through the animal experiments. I. Effects of PNE on oxygen radicals and their scavenger enzymes in liver of SD rats. Korean J Life Sci 9: 466-472.
  12. Koga T, Moro K, Mastudo T. 1998. Antioxidative behaviors of 4-hydroxy-2, 5-dimethyl-3(2H)-furanone and 4-hydroxy-2(or 5)-ethyl-5(or 2)-methyl-3(2H)-furanone against lipid peroxidation. J Agric Food Chem 46: 946-951. https://doi.org/10.1021/jf9709109
  13. Lee KG, Shibamoto T. 2002. Determination of antioxidant potential of volatile extracts isolated from various herbs and spices. J Agric Food Chem 50: 4947-4952. https://doi.org/10.1021/jf0255681
  14. Singhara A, Macku C, Shibamato T. 1998. Antioxidative activity of brewed coffee extracts. II. Medicinal plants and other foods. ACS symposium series 701. American Chemical Society, Washington, DC, USA. p 101-109.
  15. Lee KG, Shibamoto T. 2001. Antioxidant property of aroma extract isolated from clove buds [Syzygium aromaticum (L.) Merr. Et Perry]. Food Chem 74: 443-448. https://doi.org/10.1016/S0308-8146(01)00161-3
  16. Lee KG, Mitchell AE, Shibamoto T. 2000. Determination of antioxidant properties of aroma extracts isolated from various beans. J Agric Food Chem 48: 4817-4820. https://doi.org/10.1021/jf000237e
  17. Park KH, Park YD, Han JM, Im KR, Lee BW, Jeong IY, Jeong TS, Lee WS. 2006. Anti-atherosclerotic and anti-inflammatory activities of catecholic xanthones and flavonoids isolated from Cudrania tricuspidata. Bioorg Med Chem Lett 16: 5580-5583. https://doi.org/10.1016/j.bmcl.2006.08.032
  18. Ryu YB, Curtis-Long MJ, Lee JW, Ryu HW, Kim JY, Lee WS, Park KH. 2009. Structural characteristics of flavanones and flavones from Cudrania tricuspidata for neuraminidase inhibition. Bioorg Med Chem Lett 19: 4912-4915. https://doi.org/10.1016/j.bmcl.2009.07.098
  19. Oh SS, Seo EJ, Kim HY, Ryu YB, Lee JH, Gal SW, Park KH. 2007. Tyrosinase inhibitory xanthones from Cudrania tricuspidata. J Life Sci 17: 476-481. https://doi.org/10.5352/JLS.2007.17.4.476
  20. Kovats E. 1965. Gas chromatographic characterization of organic substances in the retention index system. Adv Chromatogr 1: 229-247.
  21. Osada Y, Shibamoto T. 2006. Antioxidative activity of volatile extracts from Maillard model systems. Food Chem 98: 522-528. https://doi.org/10.1016/j.foodchem.2005.05.084
  22. Shibamoto T. 1983. Heterocyclic compounds in browning and browning/nitrite model systems: Occurrence, formation mechanisms, flavor characteristics and mutagenic activity. In Instrumental Analysis of Foods. Charalambous G, Inglett G, eds. Academic Press, New York, NY, USA. Vol 1, p 229-278.
  23. Chan EWC, Soh EY, Tie PP, Law YP. 2011. Antioxidant and antibacterial properties of green, black, and herbal teas of Camellia sinensis. Pharmacognosy Res 3: 266-272. https://doi.org/10.4103/0974-8490.89748
  24. Lee KG, Shibamato T. 2001. Antioxidant activities of volatile components isolated from Eucalyptus species. J Sci Food Agric 81: 1573-1579. https://doi.org/10.1002/jsfa.980
  25. Moon JK, Shibamoto T. 2009. Antioxidant assays for plant and food components. J Agric Food Chem 57: 1655-1666. https://doi.org/10.1021/jf803537k
  26. Lee BW, Lee JH, Lee ST, Lee HS, Lee WS, Jeong TS, Park KH. 2005. Antioxidant and cytotoxic activities of xanthones from Cudrania tricuspidata. Bioorg Med Chem Lett 15: 5548-5552. https://doi.org/10.1016/j.bmcl.2005.08.099
  27. Lee JS, Han GC, Han GP, Nobuyuki K. 2007. The antioxidant activity and total polyphenol content of Cudrania tricuspidata. J East Asian Soc Dietary Life 17: 696-702.
  28. Frankel EN. 1980. Lipid oxidation. Progr Lipid Res 19: 1-22. https://doi.org/10.1016/0163-7827(80)90006-5
  29. Leem HH, Kim EO, Seo MJ, Choi SW. 2011. Antioxidant and anti-inflammatory activities of eugenol and its derivatives from clove (Eugenia caryophyllata Thunb.). J Korean Soc Food Sci Nutr 40: 1361-1370. https://doi.org/10.3746/jkfn.2011.40.10.1361

Cited by

  1. Biochemical Components and Physiological Activities of Ice Plant (Mesembryanthemum crystallinum) vol.45, pp.12, 2016, https://doi.org/10.3746/jkfn.2016.45.12.1732
  2. Exploring nuruk aroma; Identification of volatile compounds in commercial fermentation starters vol.25, pp.2, 2016, https://doi.org/10.1007/s10068-016-0054-2
  3. Isolation and Identification of 3 Low-molecular Compounds from Pear (Pyrus pyrifolia Nakai cv. Chuhwangbae) Fruit Peel vol.45, pp.2, 2013, https://doi.org/10.9721/KJFST.2013.45.2.174
  4. Physicochemical Properties and Antioxidant Activities of Different Parts of Kkujippong (Cudrania tricuspidata Bureau) from Miryang vol.31, pp.4, 2015, https://doi.org/10.9724/kfcs.2015.31.4.510
  5. 아이스플랜트(Mesembryanthemum crystallinum L.) 발효추출물의 항산화, 항당뇨 및 간 보호효과 vol.27, pp.8, 2017, https://doi.org/10.5352/jls.2017.27.8.909
  6. Rapid Characterization and Discovery of Chemical Markers for Discrimination of Xanthii Fructus by Gas Chromatography Coupled to Mass Spectrometry vol.24, pp.22, 2012, https://doi.org/10.3390/molecules24224079
  7. Platycodon grandiflorumroots: A comprehensive study on odor/aroma and chemical properties during roasting vol.44, pp.9, 2012, https://doi.org/10.1111/jfbc.13344