DOI QR코드

DOI QR Code

Conversion of CdTe Nanoparticles into Nanoribbons via Self-Assembly

CdTe 나노입자의 자기조립과정을 통한 나노리본 합성

  • Oh, Sooyeoun (Department of Chemical and Biological Engineering, Korea National University of Transportation) ;
  • Kang, Wan-Kyu (Department of Chemical and Biological Engineering, Korea National University of Transportation) ;
  • Kang, Jeong Won (Department of Computer Engineering, Korea National University Of Transportation) ;
  • Kim, Ki-Sub (Department of Chemical and Biological Engineering, Korea National University of Transportation) ;
  • Lee, Huen (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology)
  • 오수연 (한국교통대학교 화공생물공학과) ;
  • 강완규 (한국교통대학교 화공생물공학과) ;
  • 강정원 (한국교통대학교 컴퓨터공학과) ;
  • 김기섭 (한국교통대학교 화공생물공학과) ;
  • 이흔 (한국과학기술원 생명화학공학과)
  • Received : 2012.06.28
  • Accepted : 2012.07.28
  • Published : 2012.12.01

Abstract

CdTe nanoribbons feature their unique optical properties compared with CdTe nanoparticles. Slow oxidation of tellurium ions on CdTe nanoparticles resulted in the organization of individual nanoparticle into nanoribbons. The light-controlled self-assembly of CdTe nanoparticles led to twisted ribbons. It was found that irradiation improved the oxidation of tellurium ions. Transmission electron microscopy (TEM) were performed to characterize the synthesized nanostructures and showed nanowires were twisted after self-assembly. The photoluminescence was slightly blue-shifted from 550 to 544 nm. This synthetic procedure could potentially provide a key step toward the fabrication of nanowires.

CdTe 나노입자로부터 형성된 나노리본은 독특한 광학적 특성을 나타낸다. 용액 내 CdTe의 $Te^{2-}$ 이온의 산화는 나노입자에 불규칙적인 결함을 유발하며 이때 여러 층의 나노결정으로 구성된 나노리본을 형성하게 된다. 본 연구에서는 자기조립 된 CdTe 나노입자가 나노리본을 형성하는 과정에서 빛을 조사하였다. 빛은 용액 내 CdTe 나노입자의 표면에 위치한 $Te^{2-}$의 산화를 촉진시키는 촉매 역할을 수행한다. 합성된 3차원 나노리본의 형태와 특성을 투과전자현미경(TEM)으로 조사하였다. TEM 결과 안정제가 완전히 제거된 부분에서 부분적으로 접힌 꼬인 형태의 다결정 나노리본을 관찰할 수 있었다. Photoluminescence (PL) 측정 결과 550 nm에서 544 nm로 나노입자가 나노리본으로 형성될 때 Blue shift 되었음을 확인하였다. 본 연구에서 제안된 새로운 합성법은 나노물질을 합성하는 새로운 대안을 제시한다.

Keywords

References

  1. Nam, K. M., Shim, J. H., Ki, H., Choi, S.-I., Lee, G., Jang, J. K., Jo, Y., Jung, M.-H., Song, H. and Park, J. T., "Single-Crystalline Hollow Face-Centered-Cubic Cobalt Nanoparticles from Solid Face-Centered-Cubic Cobalt Oxide Nanoparticles," Angew. Chem. Int. Ed., 47, 9504-9508(2008). https://doi.org/10.1002/anie.200803048
  2. Tang, Z., Kotov, N. A. and Giersing, M., "Spontaneous Organization of Single CdTe Nanoparticles Into Luminescent Nanowires," Science., 297, 237(2002). https://doi.org/10.1126/science.1072086
  3. Tang, Z., Zhang, Z., Wang, Y., Glotzer, S. C. and Kotov, N. A., "Self-assembly of CdTe Nanocrystals Into Free-floating Sheets," Science., 314, 274(2006). https://doi.org/10.1126/science.1128045
  4. Meulenkamp, E. A., "Synthesis and Growth of ZnO Nanoparticles," J. Phys. Chem. B., 102, 5566-5572(1998). https://doi.org/10.1021/jp980730h
  5. Jing, Z., Wang, J., Li, F., Tan, L., Fu, Y. and Li, Q., "Gas Sensors Based on ZnO Nanostructures," J. Nanoeng. Nanomanuf., 2, 133-142(2012). https://doi.org/10.1166/jnan.2012.1063
  6. Margaret, A. H. and Philippe, G.-S., "Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals," J. Phys. Chem., 100(2), 468-471(1996). https://doi.org/10.1021/jp9530562
  7. Duan, X. and Liebe, C. M. R., "Laser-Assisted Catalytic Growth of Single Crystal GaN Nanowires," J. Am. Chem. Soc., 122, 188-189(2000). https://doi.org/10.1021/ja993713u
  8. Sigman, M. B., Jr. and Korgel, B. A., "Solventless Synthesis of $Bi_{2}S_{3}$ (Bismuthinite) Nanorods, Nanowires, and Nanofabric," Chem. Mater., 17(7), 1655-1660(2005). https://doi.org/10.1021/cm0478733
  9. Sun, S. and Zeng, H., "Size-Controlled Synthesis of Magnetite Nanoparticles," J. Am. Chem. Soc., 124(28), 8204-8205(2002). https://doi.org/10.1021/ja026501x
  10. Nagaveni, K., Hegde, M. S., Ravishankar, N., Subbanna, G. N. and Madras, G., "Synthesis and Structure of Nanocrystalline $TiO_{2}$ with Lower Band Gap Showing High Photocatalytic Activity," Langmuir, 20(7), 2900-2907(2004). https://doi.org/10.1021/la035777v
  11. Wang, S., Li, Y., Bai, J., Yang, Q., Song, Y. and Zhang, C., "Characterization and Photoluminescence Studies of CdTe Nanoparticles Before and After Transfer From Liquid Phase to Polystyrene," Bull. Mater. Sci., 32(5), 487-491(2009). https://doi.org/10.1007/s12034-009-0072-2
  12. Green, M., Harwood, H., Barrowman, C., Rahman, E., Paula, A., Festry, F., Dobsonb, P. and Ng, T., "A Facile Route to CdTe Nanoparticles and Their Use in Bio-labelling," J. Mater. Chem., 17, 1989-1994(2007). https://doi.org/10.1039/b615871d
  13. Kong, X. Y., Ding, Y., Yang, R. and Wang, Z. L., "Single-Crystal Nanorings Formed by Epitaxial Self-Coiling of Polar Nanobelts," Science, 303, 1348(2004).
  14. Gao, P. X., Ding, Y., Mai, W., Hughes, W. L., Lao, C. and Wang, Z. L., "Conversion of Zinc Oxide Nanobelts into Superlattice-Structured Nanohelices," Science, 390, 1700(2005).
  15. Sun, H., Wei, H., Zhang, H., Ning, Y., Tang, Y., Zhai, F. and Yang, B., "Self-Assembly of CdTe Nanoparticles into Dendrite Structure: A Microsensor to $Hg^{2+}$," Langmuir, 27(3), 1136- 1142(2011). https://doi.org/10.1021/la104325s
  16. Li, C. and Murase, N., "Surfactant-dependent Photoluminescence of CdTe Nanocrystals in Aqueous Solution," Chem. Lett, 34, 92(2005). https://doi.org/10.1246/cl.2005.92
  17. Gaponik, N., Talapin, D. V., Rogach, A. L., Hoppe, K., Shevchenko, E. V., Kornowski, A., Eychmuller, A. and Weller, H., "Thiol-Capping of CdTe Nanocrystals: An Alternative to Organometallic Synthetic Routes," J. Phys. Chem. B, 106, 7177-7185 (2002).