DOI QR코드

DOI QR Code

Infrared Radiative Heat Transfer Characteristics of Fiber Mat Catalytic Burners

매트촉매 버너의 적외선 복사열전달 특성

  • Song, Kwang Sup (Energy Materials and Convergence Research Department, Korea Institute of Energy Research) ;
  • Choi, Jung In (Energy Materials and Convergence Research Department, Korea Institute of Energy Research)
  • 송광섭 (한국에너지기술연구원 에너지융합소재 연구단) ;
  • 최정인 (한국에너지기술연구원 에너지융합소재 연구단)
  • Received : 2012.06.11
  • Accepted : 2012.07.13
  • Published : 2012.12.01

Abstract

The fiber mat catalytic burner that uses infrared radiative heat obtained by flameless catalytic combustion was manufactured and tested to investigate its combustion characteristics. About 9 to 17% of combustion heat was released by sensible heat during the premixed catalytic combustion depend on combustion condition. To find out radiation intensity with distance between catalytic burner and sample, the equation that calculate the receiving surface of radiative energy under the fiber mat catalytic burner was driven. This equation was well correlated with the drying rate of melamine. The drying experiments were carried out to the melamine, wood chip and agricultural pallet by using the fiber mat catalytic burner and the energy efficiency was calculated from drying rate of them. The energy efficiency of the fiber mat catalytic burner reaches to 79% in maximum for drying of the wood chip.

화염 없이 연소가 일어나고 원적외선 복사열을 활용할 수 있는 매트 촉매버너를 제작하여 연소실험과 전열특성 분석을 수행하였다. 매트 촉매버너를 이용한 예혼합 연소실험에서 연소열의 9~17% 정도가 현열로 배출되었으며, 연소조건에 따라 차이를 보였다. 촉매버너와 시료 사이 거리증가에 따라 복사강도가 적어졌는데, 매트 촉매버너 아래에서 거리에 따라 변하는 복사에너지 흡수면적을 계산할 수 있는 수식을 유도하였다. 이 식을 멜라민 건조실험 결과와 비교하여 상관성이 있음을 보였다. 매트 촉매버너를 이용하여 멜라민, wood chip, 농산 pallet 등에 대한 건조실험을 수행하고, 이들의 건조속도로부터 에너지 이용효율을 계산하였다. 매트 촉매버너를 이용한 건조에서 최대 에너지 이용효율은 wood chip 건조에서 79% 정도까지 얻을 수 있었다.

Keywords

References

  1. Pfefferle, L. D. and Pfefferle, W. C., "Catalysis in Combustion," Catal. Rev.-Sci. Eng., 29, 219(1987). https://doi.org/10.1080/01614948708078071
  2. Hodnett, B. K., Heterogeneous Catalytic Oxidation, John Wiley & Sons, Chichester, England, 189-239(2000).
  3. Trimm, D. L. and Lan, C.-W., "The Combustion of Methane on Platinum-Alumina Fibre Catalysts. II Design and Testing of a Convective-Diffusive Type Catalytic Combustor," Chem. Eng. Sci., 35, 1731(1980). https://doi.org/10.1016/0009-2509(80)85008-1
  4. Song, K. S., Jung, N. J. and Kim, H. Y., "Combustion Characteristics and Design of Fiber Mat Catalytic Burners," J. Energy Eng., 17, 77(2008).
  5. Cerri, I., Saracco, G., Specchia. V. and Trimis, D., "Improved Performance Knitted Fibre Mats as Supports for Pre-mixed Natural Gas Catalytic Combustion," Chem. Eng. J., 82, 79(2001).
  6. Kim, S. D., Lee, S. H., Rhim, Y. J., Choi, H. K., Lim, J. H., Chun, D. H. and Yoo, J. H., "Drying Characteristic of High Moisture Coal using a Flash Dryer," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 50, 106(2012). https://doi.org/10.9713/kcer.2012.50.1.106
  7. Kim, O. S., Lee, D. H. and Chun, W. P., "Eco-Friendly Drying Technology using Superheated Steam," Korean Chem. Eng. Res. (HWAHAK KONGHAK), 46, 258(2008).
  8. Nema, P. K. and Datta, A. K., "Infra Red Drying and Hot Air Drying of Potato: A Theoretical Consideration," J. Food Sci. Technol., 41, 580(2004).
  9. Seo, Y. S., Cho, S. J., Song, K. S. and Kang, S. K., "A Fiber-mat Catalytic Burner for the Heating System of PVC Tiles," Int. J. Energy Res., 26, 921(2002). https://doi.org/10.1002/er.828
  10. McCabe, W. L. and Smith, J. C., Unit Operation of Chemical Engineering, 3rd, McGraw- Hill, New York, 371-397(1976).
  11. Radcliffe, S. W. and Hickman, R. G., "Diffusive Catalytic Combustors," J. Inst. Fuel, 48, 208(1975).
  12. Park, W. S., Far-Infrared Radiation Technology and it's Application (Korean), Laboratory of Korea Far-Infrared Radiation Application (1997).