DOI QR코드

DOI QR Code

Process Design and Cost Estimation of Carbon Dioxide Compression and Liquefaction for Transportation

이산화탄소 수송을 위한 압축 및 액화 공정 설계 및 비용 평가

  • 양시엽 (서울대학교 화학생물공학부) ;
  • 이웅 (서울대학교 화학생물공학부) ;
  • 임영섭 (서울대학교 화학생물공학부) ;
  • 정영수 (서울대학교 화학생물공학부) ;
  • 김정남 (서울대학교 화학생물공학부) ;
  • 이치섭 (한국전력기술) ;
  • 한종훈 (서울대학교 화학생물공학부)
  • Received : 2012.07.03
  • Accepted : 2012.08.23
  • Published : 2012.12.01

Abstract

Energy and cost analysis of the preprocessing for carbon capture and storage transportation such as supercritical compression and liquefaction is done using chemical simulation model. Direct compression to supercritical phase (process 1-1), liquefaction and pumping (process 1-2), carbon dioxide compression and expansion as a refrigerant itself (process 2), usage of other refrigerant with compression and expansion (process 3-1), with absorption chiller (process 3-2), cascade refrigeration (process 3-2) have been simulated and evaluated. The specific cost is about 4 to 7 $/ton.

이산화탄소 포집 및 저장 기술 중에서 수송 단계를 위한 전처리 과정인 초임계 압축 및 액화 공정에 대해서 압축 방법에 따른 에너지와 그 때의 비용의 평가가 이루어졌다. 이산화탄소를 초임계상까지 직접 압축하는 경우(공정 1-1), 액화 후 펌프로 초임계상을 만드는 경우(공정 1-2), 이산화탄소의 가압 팽창으로 액화하는 경우(공정 2), 다른 냉매를 사용하면서 그 냉매를 가압, 팽창으로 얻는 경우(공정 3-1), 냉매를 흡수 냉각법으로 얻는 경우(공정 3-2), 캐스케이드 방법을 사용한 경우(공정 4)에 대해서 각각 공정 모사되었으며 그 때의 비용이 평가되었다. 비용은 $4~7/ton으로 추정된다.

Keywords

References

  1. Huh, D.-G., Park, Y.-C., Yoo, D.-G. and Hwang, S.-H., $CO_{2}$ "Geological Storage Potential in Korea," Energy Procedia, 4, 4881-4888(2011). https://doi.org/10.1016/j.egypro.2011.02.456
  2. Condor, J., Unatrakarna, D., Asghari, K. and Wilson, M., "Current Status of CCS Initiatives in the Major Emerging Economies," Energy Procedia, 4, 6125-6132(2011). https://doi.org/10.1016/j.egypro.2011.02.620
  3. IEA, Energy Techology perspectives. 3 (2010).
  4. KEPCO, KEPCO Sustainability Report 2011. 1-88(2011).
  5. The 5th Basic Plan for Long-term Electricity Supply and Demand. Ministry of Knowledgy Economy Korea Power Exchange 2010.
  6. G. G., The energetics of carbon dioxide capture in power plants. US Department of Energy 2004.
  7. Aspelund, A. and Jordal, K., "Gas Conditioning-The Interface Between $CO_{2}$ Capture and Transport," International Journal of Greenhouse Gas Control., 1(3), 343-354(2007). https://doi.org/10.1016/S1750-5836(07)00040-0
  8. Kinard, G. E. and Gaumer, L. S., "Mixed Refrigerant Cascade Cycles for LNG,"Journal Name: Chem. Eng. Progr., v. 69, no. 1, pp. 56-61; Other Information: Orig. Receipt Date: 30-JUN-74, Medium: X (1973).
  9. Mortazavi, A., Somers, C., Alabdulkarem, A., Hwang, Y. and Radermacher, R., "Enhancement of APCI Cycle Efficiency with Absorption Chillers," Energy, 35(9), 3877-3882(2010). https://doi.org/10.1016/j.energy.2010.05.043
  10. Romeo, L. M., Bolea, I., Lara, Y. and Escosa, J. M., "Optimization of Intercooling Compression in $CO_{2}$ Capture Systems," Appl. Therm. Eng., 29(8-9), 1744-1751(2009). https://doi.org/10.1016/j.applthermaleng.2008.08.010
  11. de Visser, E., Hendriks, C., Barrio, M., Mølnvik, M. J., de Koeijer, G., Liljemark, S. and Le Gallo, Y., "Dynamis $CO_{2}$Quality Recommendations," International Journal of Greenhouse Gas Control., 2(4), 478-484(2008). https://doi.org/10.1016/j.ijggc.2008.04.006
  12. NIST Standard Reference Database 69: NIST Chemistry Web- Book.
  13. Aspen Plus 7.3 APV73 EOS-LIT.
  14. Lorentzen, G., "Revival of Carbon Dioxide as a Refrigerant," Int. J. Refrig., 17(5), 292-301(1993).
  15. Darwish, N. A., Al-Hashimi, S. H. and Al-Mansoori, A. S., "Performance Analysis and Evaluation of a Commercial Absorptionrefrigeration Water-ammonia (ARWA) System," Int. J. Refrig., 31(7), 1214-1223(2008). https://doi.org/10.1016/j.ijrefrig.2008.02.005
  16. Lee, J.-H., Kwak, N.-S., Lee, I.-Y., Jang, K.-R. and Shim, J.-G., "Performance and Economic Analysis of Domestic Supercritical Coal-Fired Power Plant with Post-Combustion $CO_{2}$ Capture Plant," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 50(2), 365-370(2012). https://doi.org/10.9713/kcer.2012.50.2.365
  17. KEPCO, General Design Standards of Sinboryeong Power Plant, KOMIPO (2012).

Cited by

  1. Estimation of CO2 Transport Costs in South Korea Using a Techno-Economic Model vol.8, pp.3, 2015, https://doi.org/10.3390/en8032176