DOI QR코드

DOI QR Code

Treatment of Waste Air Containing Malodor and VOC: 1. Effect of Photocatalyst-carrying Media Porosity on the Photocatalytic Removal Efficiency of Malodor and VOC of Waste Air

악취 및 VOC를 함유한 폐가스의 광촉매 처리: 1. 처리효율에 대한 광촉매담체 다공성의 영향

  • Lee, Eun Ju (Department of Chemical Engineering, Daegu University) ;
  • Park, Hyeri (Department of Chemical Engineering, Daegu University) ;
  • Lim, Kwang-Hee (Department of Chemical Engineering, Daegu University)
  • Received : 2012.10.16
  • Accepted : 2012.11.18
  • Published : 2012.12.01

Abstract

The effect of photocatalyst-carrying media porosity on the photocatalytic removal efficiency of malodor and VOC of waste air was evaluated when the photocatalytic removal efficiency of porous silica-based media was compared with that of glass bead as control. The amount of photocatalyst coated on the surface of porous silica-based media was observed to be $1,716.3{\mu}g/cm^2$, which was 250% as much as that of nonporous glass bead (control) of $670{\mu}g/cm^2$. The removal efficiencies of hydrogen sulfide and toluene in case of porous silica-based media were observed to be 22% and 82%, respectively, while the removal efficiencies of hydrogen sulfide and toluene in case of nonporous glass bead media were observed to be 19% and 53%, respectively. Therefore, the removal efficiencies of hydrogen sulfide and toluene increased by 16% and 55%, respectively, when the removal efficiencies of porous silica-based media were compared with those of nonporous glass bead media. Thus the increment ratio of the removal efficiency of toluene was observed to be 3.4 times higher than that of hydrogen sulfide.

광촉매반응기의 충전제로서 glass bead-광촉매담체를 control로 하고 다공성의 silica-based 광촉매담체를 사용하였을 때의 악취 및 VOC를 함유한 폐가스의 광촉매 처리효율에 대한 광촉매담체 다공성의 영향평가를 수행하였다. 다공성의 silica-based-광촉매담체의 광촉매 코팅량은 $1,716.3{\mu}g/cm^2$로서 nonporous glass bead(control)에 담지된 광촉매코팅량인 $670{\mu}g/cm^2$ 값의 약 250%이었다. Porous silica-based 담체가 충전된 광촉매반응기의 황화수소 및 톨루엔 제거효율은 각각 22% 및 82%로서, glass-bead 담체가 충전된 UV/광촉매반응기의 경우의 황화수소 및 톨루엔 제거효율인 각각 19% 및 53%와 비교하였을 때에 황화수소의 경우는 약 16% 증가하였고 톨루엔의 경우는 약 55% 증가하였다. 따라서 다공성의 silica-based 광촉매담체를 사용함으로써 황화수소와 톨루엔의 동시처리효율을 각각 제고하였고, 처리효율의 제고율은 황화수소보다 톨루엔의 경우가 3.4배 높았다.

Keywords

References

  1. Chu, Y. H., Kim, H. J., Song, K. Y., Shul, Y. G., Jung, K. T., Lee, K. and Han, M. H., "Preparation of Mesoporous Silica Fiber Matrix for VOC Removal," Catal. Today., 74, 249-256(2002). https://doi.org/10.1016/S0920-5861(02)00028-7
  2. Hung, W. C., Fu, S. H., Tseng, J. J., Chu, H. and Ko, T. H., "Study on Photocatalytic Degradation of Gaseous Dichloromethane Using Pure and Iron Ion-doped $TiO_{2}$ Prepared by the Sol-gel Method," Chemosphere, 66, 2142-2151(2007). https://doi.org/10.1016/j.chemosphere.2006.09.037
  3. Bouazza, N., Lillo-Rodenas, M. A. and Linares-Solano, A., "Enhancement of the Photocatalytic Activity of Pelletized $TiO_{2}$ for the Oxidation of Propene at Low Concentration," Appl. Catal., B 77, 284-293(2008). https://doi.org/10.1016/j.apcatb.2007.07.027
  4. Bouazza, N., Lillo-Rodenas, M. A. and Linares-Solano, A., "Photocatalytic Activity of $TiO_{2}$-based Materials for the Oxidation of Propene and Benzene at low Concentration in Presence of Humidity," Appl. Catal., B 84, 691-698(2008). https://doi.org/10.1016/j.apcatb.2008.06.002
  5. Lim, K. H., Park, S. W., Lee, E. J. and Hong, S. H., "Treatment of Mixed Solvent Vapors with Hybrid System Composed of Bio-filter and Photo-catalytic Reactor," Korean J. Chem Eng., 22(1), 70-79(2005). https://doi.org/10.1007/BF02701465
  6. Lee, E. J. and Lim, K. H., "Treatment of Malodorous Waste Air Using Hybrid System," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 48(3), 382-390(2010).
  7. Yang, L. and Liu, Z., "Study of Light Intensity in the Process of Photocatalytic Degradation of Indoor Gaseous Formaldehyde for Saving Energy," Energy Conv. Manag., 48, 882-889(2007). https://doi.org/10.1016/j.enconman.2006.08.023
  8. Neti, N. R., Parmar, G. R., Bakardjieva, S. and Subrt, J., "Thick Film Titania on Glass Supports for Vapour Phase Photocatalytic Degradation of Toluene, Acetone, and Ethanol," J. Chem. Eng., 163, 219-229(2010). https://doi.org/10.1016/j.cej.2010.07.038
  9. Bouzaza, A. and Laplanche, A., "Photocatalytic Degradation of Toluene in the Gas Phase: Comparative Study of some $TiO_{2}$ Supports," J. Photochem. Photobiol., A 150, 207-212(2002).
  10. Puddu, V., Choi, H., Dionysiou, D. D. and Puma, G. L., "$TiO_{2}$ Photocatalyst for Indoor Air Remediation: Influence of Crystallinity Crystal Phase, and UV Radiation Intensity on Trichloroethylene Degradation," Appl. Catal., B 94, 211-218(2010). https://doi.org/10.1016/j.apcatb.2009.08.003
  11. Kim, S. B., Hwang, H. T. and Hong, S. C., "Photocatalytic Degradation of Volatile Organic Compounds at the Gas-solid Interface of a $TiO_{2}$ Photocatalyst," Chemosphere, 48, 437-444(2002). https://doi.org/10.1016/S0045-6535(02)00101-7
  12. Sanchez, B., Coronado, J. M., Caudal, R., Portela, R., Tejedor, I., Anderson, M. A., Tompkins, D. and Lee, T., "Preparation of $TiO_{2}$ Coatings on PET Monoliths for the Photocatalytic Elimination of Trichloroethylene in the Gas Phase," Appl. Catal., B 66, 295-301(2006). https://doi.org/10.1016/j.apcatb.2006.03.021

Cited by

  1. 광촉매 카트리지를 활용한 악취 및 VOC를 함유한 폐가스의 광촉매처리 vol.51, pp.1, 2012, https://doi.org/10.9713/kcer.2013.51.1.80