DOI QR코드

DOI QR Code

IS THE ANOMALOUS MICROWAVE EMISSION DUE TO THE ROTATION OF INTERSTELLAR PAHS? PLANCK RESULTS: PLANCK - AKARI PROJECT

  • Planck Collaboration, Planck Collaboration (Planck Collaboration) ;
  • Giard, M. (Universite de Toulouse, UPS-OMP, IRAP) ;
  • Berne, O. (Universite de Toulouse, UPS-OMP, IRAP) ;
  • Doi, Y. (University of Tokyo) ;
  • Ishihara, D. (University of Tokyo) ;
  • Joblin, Ch. (Universite de Toulouse, UPS-OMP, IRAP) ;
  • Kaneda, I. (Nagoya University) ;
  • Marshall, D. (Universite de Toulouse, UPS-OMP, IRAP) ;
  • Nakagawa, T. (Sagamihara) ;
  • Ohsawa, R. (University of Tokyo) ;
  • Onaka, T. (University of Tokyo) ;
  • Sakon, I. (University of Tokyo) ;
  • Shibai, H. (University of Tokyo) ;
  • Ysard, N. (Institut dAstrophysique Spatiale, CNRS (UMR8617) Universite Paris-Sud 11)
  • Received : 2012.07.13
  • Accepted : 2012.08.16
  • Published : 2012.09.16

Abstract

We show how the rotation emission from isolated interstellar Polycyclic Aromatic Hydrocarbons (PAHs) can explain the so-called anomalous microwave emission (AME). AME has been discovered in the last decade as microwave interstellar emission (10 to 70 GHz) that is in excess compared to the classical emission processes: thermal dust, free-free and synchrotron. The PAHs are the interstellar planar nano-carbons responsible for the near infrared emission bands in the 3 to 15 micron range. Theoretical studies show that under the physical conditions of the interstellar medium (radiation and density) the PAHs adopt supra-thermal rotation velocities, and consequently they are responsible for emission in the microwave range. The first results from the PLANCK mission unexpectedly showed that the AME is not only emitted by specific galactic interstellar clouds, but it is present throughout the galactic plane, and is particularly strong in the cold molecular gas. The comparison of theory and observations shows that the measured emission is fully consistent with rotation emission from interstellar PAHs. We draw the main lines of our PLANCK-AKARI collaborative program which intends to progress on this question by direct comparison of the near infrared (AKARI) and microwave (PLANCK) emissions of the galactic plane.

Keywords

References

  1. Banday, A. J., et al., 2003, Reappraising Foreground Contamination in the COBE-DMR Data, MNRAS, 345, 897 https://doi.org/10.1046/j.1365-8711.2003.07008.x
  2. Davies, R. D., et al., 1987, Sensitive Measurement of Fluctuations in the Cosmic Microwave Background, Nature, 326, 462 https://doi.org/10.1038/326462a0
  3. De Oliveira-Costa, A., et al., 1997, Galactic Microwave Emission at Degree Angular Scales, ApJ, 482, L17 https://doi.org/10.1086/310684
  4. De Oliveira-Costa, A. & Tegmark, M., 1999, Editors of the Microwave Foregrounds ASP Conference Series Vol. 181
  5. De Oliveira-Costa, A., et al., 1999, Cross-Correlation of the Tenerife Data with Galactic Templates - Evidence for Spinning Dust ?, ApJ, 527, L9 https://doi.org/10.1086/312384
  6. Dickinson, C., et al., 2003, Towards a Free-Free Template for CMB Foregrounds, MNRAS, 341, 369 https://doi.org/10.1046/j.1365-8711.2003.06439.x
  7. Drain, B. T. & Lazarian, A., 1998, Diffuse Galactic Emission from Spinning Dust Grains, ApJ, 494, L19 https://doi.org/10.1086/311167
  8. Erickson, W. C., 1957, A Mechanism of Non-Thermal Radio-Noise Origin, ApJ, 126, 480 https://doi.org/10.1086/146421
  9. Finkbeiner, D. P., et al., 2002, Tentative Detection of Electric Dipole Emission from Rapidly Rotating Dust Grains, ApJ, 566, 898 https://doi.org/10.1086/338225
  10. Gaustad, J. E., et al., 2001, A Robotic Wide-Angle H-alpha Survey of the Southern Sky, PASP, 113, 1326 https://doi.org/10.1086/323969
  11. Haslam, C. G. T., et al., 1982, A 408 MHz All-Sky Continuum Survey. II - The Atlas of Contour Maps, A&AS, 47, 1
  12. Hoang, T., et al., 2010, Improving the Model of Emission from Spinning Dust: Effects of Grain Wobbling and Transient Spin-Up, ApJ, 715, 1462 https://doi.org/10.1088/0004-637X/715/2/1462
  13. Kogut, A., et al., 1996, Microwave Emission at High Galactic Latitudes in the Four-Year DMR Sky Maps, ApJ, 464, L5 https://doi.org/10.1086/310072
  14. Kogut, A., 1999, Anomalous Microwave Emission, in Microwave Foregrounds, ASP Conference Series Vo. 181, Eds. A. de Oliveira-Costa and M. Tegmark
  15. Lagache, G., 2003, The Large-Scale Anomalous Microwave Emission Revisited by WMAP, A&A, 405, 813 https://doi.org/10.1051/0004-6361:20030545
  16. Leitch, E. M., et al., 1997, An Anomalous Component of the Galactic Emission, ApJ, 486, L23 https://doi.org/10.1086/310823
  17. Martin, P. G., 1972, On the Interaction of Rotating Interstellar Grains with Cosmic Lowfrequency Radiation, MNRAS, 155, 283
  18. Planck Collaboration, 2011a, Planck Early Results XX. New Light on Anomalous Microwave Emission from Spinning Dust Grains, A&A, 536, A20 https://doi.org/10.1051/0004-6361/201116470
  19. Planck Collaboration, 2011b, Planck Early Results XXI. Properties of the Interstellar Medium in the Galactic Plane, A&A, 536, A21 https://doi.org/10.1051/0004-6361/201116455
  20. Reynolds, R. J., et al., 1998, The Wisconsin H-alpha Mapper (WHAM): A brief Review of Performance Characteristics and Early Scientific Results, PASA, 15, 14 https://doi.org/10.1071/AS98014
  21. Silsbee, K., et al., 2011, Spinning Dust Emission: The Effect of Rotation around a Non-Principal Axis, MNRAS, 411, 2750 https://doi.org/10.1111/j.1365-2966.2010.17882.x
  22. Rouan, D., 1992, Physics of the Rotation of a PAH Molecule in Interstellar Environments, A&A, 253, 498
  23. Tauber, J, et al., 2001, Planck Pre-Launch Status: The Planck Mission, A&A, 520, A1
  24. Ysard, N. & Verstraete, L., 2010, The Long- Wavelength Emission of Interstellar PAHs: Characterizing the Spinning Dust Contribution, A&A, 509, A12 https://doi.org/10.1051/0004-6361/200912708