DOI QR코드

DOI QR Code

A PANORAMIC VIEW OF THE ASTEROIDS IN THE INNER SOLAR SYSTEM WITH AKARI

  • Usui, F. (Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency) ;
  • Kuroda, D. (Okayama Astrophysical Observatory, National Astronomical Observatory) ;
  • Muller, T.G. (Max-Planck-Institut fur Extraterrestrische Physik) ;
  • Hasegawa, S. (Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency) ;
  • Ishiguro, M. (Department of Physics and Astronomy, Seoul National University) ;
  • Ootsubo, T. (Astronomical Institute, Tohoku University) ;
  • Ueno, M. (Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency) ;
  • AKARI SOSOS team, AKARI SOSOS team (AKARI SOSOS team)
  • Received : 2012.07.01
  • Accepted : 2012.08.04
  • Published : 2012.09.16

Abstract

We constructed an unbiased asteroid catalog from the mid-infrared part of the All-Sky Survey with the Infrared Camera (IRC) on board AKARI. About 20% of the point source events recorded in the IRC All-Sky Survey observations were not used for the IRC Point Source Catalog in its production process because of a lack of multiple detection by position. Asteroids, which are moving objects on the celestial sphere, are included in these "residual events" We identified asteroids out of the residual events by matching them with the positions of known asteroids. For the identified asteroids, we calculated the size and albedo based on the Standard Thermal Model. Finally we had a new brand of asteroid catalog, which contains 5,120 objects, about twice as many as the IRAS asteroid catalog.

Keywords

References

  1. Allen, D. A., 1970, Infrared Diameter of Vesta, Nature, 227, 158 https://doi.org/10.1038/227158a0
  2. Allen, D. A., 1971, The Method of Determining Infrared Diameters, in Physical Studies of Minor Planets, Ed. T. Gehrelsm (Washington: National Aeronautics and Space Administration SP-267), 41
  3. Bottke, W. F. Jr., et al., 2005, Linking the Collisional History of the Main Asteroid Belt to Its Dynamical Excitation and Depletion, Icarus, 179, 63 https://doi.org/10.1016/j.icarus.2005.05.017
  4. Britt, D. T., et al., 2002, Asteroid Density, Porosity, and Structure, in Asteroids III, Ed. W. F. Bottke, A. Cellino, P. Paolicchi, & R. P. Binzel, (Tucson: University of Arizona Press), 485
  5. Burbine, T. H., et al., 2008, Oxygen and Asteroids, Reviews in Mineral. & Geochem., 68, 273 https://doi.org/10.2138/rmg.2008.68.12
  6. Carry, B., et al., 2012, Shape Modeling Technique KOALA Validated by ESA Rosetta at (21) Lutetia, P&SS, 66, 200 https://doi.org/10.1016/j.pss.2011.12.018
  7. Chapman, C. R., et al., 1975, Surface Properties of Asteroids - A Synthesis of Polarimetry, Radiometry, and Spectrophotometry, Icarus, 25, 104 https://doi.org/10.1016/0019-1035(75)90191-8
  8. Cheng, A. F., et al., 1997, Near-Earth Asteroid Rendezvous: Mission overview, Journal of Geophysical Research, 102, 23695 https://doi.org/10.1029/96JE03364
  9. Dotto, E., et al., 2002, Observations from Orbiting Platforms, in Asteroids III, Ed. W. F. Bottke et al. (Tucson: University of Arizona Press), 219
  10. Drummond, J. D., et al., 1985a, Speckle Interferometry of Asteroids. I - 433 Eros, Icarus, 61, 132 https://doi.org/10.1016/0019-1035(85)90160-5
  11. Drummond, J. D., et al., 1985b, Speckle Interferometry of Asteroids. II - 532 Herculina, Icarus, 61, 232 https://doi.org/10.1016/0019-1035(85)90105-8
  12. Drummond, J. D., et al., 1998, Full Adaptive Optics Images of Asteroids Ceres and Vesta; Rotational Poles and Triaxial Ellipsoid Dimensions, Icarus, 132, 80 https://doi.org/10.1006/icar.1997.5882
  13. Durech, J., et al., 2011, Combining Asteroid Models Derived by Lightcurve Inversion with Asteroidal Occultation Silhouettes, Icarus, 214, 652 https://doi.org/10.1016/j.icarus.2011.03.016
  14. Fujiwara, A., et al., 2006, The Rubble-Pile Asteroid Itokawa as Observed by Hayabusa, Science, 312, 1330 https://doi.org/10.1126/science.1125841
  15. Grav, T., et al., 2011, WISE/NEOWISE Observations of the Jovian Trojans: Preliminary Results, ApJ, 742, 40 https://doi.org/10.1088/0004-637X/742/1/40
  16. Grav, T., et al., 2012, WISE/NEOWISE Observations of the Hilda Population: Preliminary Results, ApJ, 744, 197 https://doi.org/10.1088/0004-637X/744/2/197
  17. Harris, A. W. & Lagerros, J. S. V., 2002, Asteroids in the Thermal Infrared, in Asteroids III, Ed. W. F. Bottke et al. (Tucson: University of Arizona Press), 205
  18. Hilton, J. L., 2002, Asteroid Masses and Densities, in Asteroids III, Ed. W. F. Bottke, A. Cellino, P. Paolicchi, & R. P. Binzel, (Tucson: University of Arizona Press), 103
  19. Ishihara, D., et al., 2010, The AKARI/IRC Mid- Infrared All-Sky Survey, A&A, 514, A1 https://doi.org/10.1051/0004-6361/200913811
  20. Kawada, M., et al., 2007, The Far-Infrared Surveyor (FIS) for AKARI, PASJ, 59, S389
  21. Kessler, M. F., et al., 1996, The Infrared Space Observatory (ISO) Mission, A&A, 315, L27
  22. Lebofsky, L. A., et al., 1986, A Refined 'Standard' Thermal Model for Asteroids Based on Observations of 1 Ceres and 2 Pallas, Icarus, 68, 239 https://doi.org/10.1016/0019-1035(86)90021-7
  23. Mainzer, A., et al., 2011, NEOWISE Observations of Near-Earth Objects: Preliminary Results, ApJ, 743, 156 https://doi.org/10.1088/0004-637X/743/2/156
  24. Masiero, J. R., et al., 2011, Main Belt Asteroids with WISE/NEOWISE. I. Preliminary Albedos and Diameters, ApJ, 741, 68 https://doi.org/10.1088/0004-637X/741/2/68
  25. Matson, D. L., 1971, Infrared Observations of Asteroids, in IAU Colloq. 12, Physical Studies of Minor Planets, Ed. T. Gehrelsm (Washington: National Aeronautics and Space Administration SP-267), 45
  26. Mill, J. D., et al., 1994, Midcourse Space Experiment: Introduction to the Spacecraft, Instruments, and Scientific Objectives, Journal of Spacecraft and Rockets, vol. 31, no. 5, 900 https://doi.org/10.2514/3.55673
  27. M¨uller, T. G., et al., 2002, Solar System Objects in the ISOPHOT 170 ${\mu}m$ Serendipity Survey, A&A, 389, 665 https://doi.org/10.1051/0004-6361:20020596
  28. M¨uller, T. G., et al., 2005, Comets, Asteroids and Zodiacal Light as Seen by ISO, Space Science Review, 119, 141 https://doi.org/10.1007/s11214-005-8067-9
  29. Murakami, H., et al., 2007, The Infrared Astronomical Mission AKARI, PASJ, 59, S369
  30. Neugebauer, G., et al., 1984, The Infrared Astronomical Satellite (IRAS) Mission, ApJ, 278, L1 https://doi.org/10.1086/184209
  31. Onaka, T., et al., 2007, The Infrared Camera (IRC) for AKARI - Design and Imaging Performance, PASJ, 59, S401
  32. Ootsubo, T., et al., 2012, AKARI Near-Infrared Spectroscopic Survey for Cometary Volatiles, in this volume https://doi.org/10.5303/PKAS.2012.27.4.161
  33. Ostro, S. J., et al., 2002, Asteroid Radar Astronomy, in Asteroids III, Ed. W. F. Bottke et al. (Tucson: University of Arizona Press), 151
  34. Pyo, J., et al., 2012, Zodiacal Light in the Infrared from the Space Missions, in this volume
  35. Tedesco, E. F., et al., 2002a, The Supplemental IRAS Minor Planet Survey, AJ, 123, 1056 https://doi.org/10.1086/338320
  36. Tedesco, E. F., et al., 2002b, The Midcourse Space Experiment Infrared Minor Planet Survey, AJ, 124, 583
  37. Thomas, P. C., et al., 1997, Impact Excavation on Asteroid 4 Vesta: Hubble Space Telescope results, Science, 277, 1492 https://doi.org/10.1126/science.277.5331.1492
  38. Usui, F., et al., 2011, Asteroid Catalog Using AKARI: AKARI/IRC Mid-Infrared Asteroid Survey, PASJ, 63, 1117
  39. Wright, E. L., et al., 2010, The Wide-field Infrared Survey Explorer (WISE): Mission Description and Initial On-orbit Performance, ApJ, 140, 1868

Cited by

  1. AKARI NEAR-INFRARED SPECTROSCOPIC SURVEY FOR COMETARY VOLATILES vol.27, pp.4, 2012, https://doi.org/10.5303/PKAS.2012.27.4.161