DOI QR코드

DOI QR Code

Analysis on Behavior of Vertically Loaded Single Pile included in Pile Group

무리말뚝을 구성하는 외말뚝의 연직방향 하중지지 거동분석

  • Lee, Seung-Hyun (Dept. of Civil Engineering, Sunmoon University) ;
  • Kim, Byoung-Il (Dept. of Civil and Environmental Engineering, Myongji University) ;
  • Yoo, Wan-Kyu (Dept. of Civil and Environmental Engineering, Myongji University)
  • 이승현 (선문대학교 토목공학과) ;
  • 김병일 (명지대학교 토목환경공학과) ;
  • 유완규 (명지대학교 토목환경공학과)
  • Received : 2012.07.16
  • Accepted : 2012.10.11
  • Published : 2012.10.31

Abstract

Static pile load tests were conducted on the two piles which comprised group pile installed in sand and the test results were compared with those obtained from load transfer method. Predicted load bearing capacity of the pile which locates center portion of the group pile was less than that from the load test and the reason is thought to be the densification of the soil due to the installation of the group pile. Predicted pile capacity of the API method, Coyle and Sulaiman method were 77%, 90% of the bearing capacity obtained from the load test, respectively. Comparing ultimate bearing capacities of the pile locating at the edge of the group pile, those predicted by the API method, Coyle and Sulaiman method were 1.1 times, 1.3 times of the bearing capacity obtained from the pile load test, respectively.

모래지반에 설치된 무리말뚝 중 두 개의 말뚝에 대하여 하중재하시험을 실시하고 그 결과를 하중전이법을 적용한 해석결과와 비교 분석하였다. 무리말뚝 설치 후 무리말뚝의 중앙부에 위치한 말뚝에 대한 해석결과에 따르면 하중지지능력이 재하시험결과보다 작게 나타났는데 주된 원인은 무리말뚝 설치로 인한 지반조밀화로 생각된다. 또한 API 방법과 Coyle and Sulaiman 방법을 적용하여 구한 하중-침하곡선으로부터 Davisson 방법을 통해 구한 말뚝의 극한지지력은 재하시험에 의한 극한지지력 값의 각각 77%와 90%였다. 무리말뚝 설치로 인한 지반 조밀화의 영향을 비교적 덜 받은 가장자리 말뚝에 대한 재하시험결과와 해석결과를 비교할 때 Davisson 방법을 통해 구한 말뚝의 극한지지력은 API 방법과 Coyle and Sulaiman 방법에 의할 경우 재하시험결과에 의한 값에 비해 각각 1.1배와 1.3배의 값을 보였다.

Keywords

References

  1. R. D. Mindlin, "Force at a point in the interior of a semi-infinite solid". Physics, Vol. 7, No. 5, May, pp. 195-202, 1936. https://doi.org/10.1063/1.1745385
  2. American Society for Testing and Materials, "Standard Method of Testing Piles under Static Axial Compressive Load", ASTM D1143-81, Vol. 04.08, Philadelphia, pp. 179-189, 1989.
  3. H. M. Coyle and L. C. Reese, "Load transfer for axially loaded piles in clay. Journal of the Soil Mechanics and Foundations Divison", ASCE, Vol. 92, SM2, Paper No. 4702, March, pp. 1-26, 1966.
  4. American Petroleum Institute, "API Recommended Practice for Planning, Designing, and Constructing Fixed Offshore Platforms", Report RP-2A, 1993.
  5. M. W. O'Neill, R. A. Hawkins and L. J. Mahar, "Load transfer mechanism in piles and pile groups", Journal of the Geotechnical Engineering Division, ASCE, Vol. 108, No. GT12. December, pp. 1605-1623, 1982.
  6. J. E. Bowles, "Foundation analysis and design", McGraw-Hill, Inc, 1988.
  7. G. C. Meyerhof, "Penetration tests and bearing capacity of cohesionless soils", Journal of the Soil Mechanics and Foundations Divison, ASCE, Vol. 82, SM1, pp. 1-19, 1956.
  8. S. Thorburn and MacVicar, "Pile load tests to failure in the Clyde Alluvium", Proc. Conference on Behavior of Piles, ICE, pp. 1-8, 1971.
  9. J. H. Schmertmann, "Guidelines for Cone Penetration Test", Performance and Design, Report No. FHWA-TS-78-209, U.S. Department of Transportation, Washington, D.C., pp. 145, 1978.
  10. H. M. Coyle and I. H. Sulaiman, "Skin friction for steel piles in sand. Journal of the Soil Mechanics and Foundations Divison", ASCE, Vol. 93, SM6, Paper No. 5590, November, pp. 261-278, 1967.
  11. A. S. Vesic, "Tests on instrumented piles", Ogeechee River Site. Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 96, Paper No. SM2, March, pp. 561-584, 1970.
  12. L. C. Reese, W. M. Isenhower and S. T. Wang, "Shallow and deep foundations", John Wiley & Sons Inc., pp. 430-435, 2006.
  13. M. T. Davisson, "High capacity piles. in Innovations in Foundation Construction", Proceedings of a lecture series, Illinois Section ASCE, Chicago, 1973.