Abstract
The present study proposes the optimization of wing structure base on reduced model which assures the solution accuracy and computational efficiency. Well-constructed reduced model assures the accurate result in the eigenvalue problem, dynamic analysis or sensitivity of design optimization. Reduced system is classified into the reduce-order model based on structural modes and the reduced system based on degrees of freedom. Because this study uses the reduced system based on degrees of freedom, it is important to select the dominant degrees of freedom properly. For this work, robust selection method, two-level selection scheme, is employed and IRS(Improved Reduced System) is applied to construct the final reduced system. In the optimization process based on the reduced system, all of the equivalent stress, eigenvalue and design sensitivities are calculated from the reduced system. Through a numerical example, it is shown that the present optimization methodology based on the reduction method can provide an optimal results for objective function satisfying constraint condition.
본 연구에서는 축소모델을 기반으로 비행체 날개를 최적화하는 기법을 제안한다. 잘 구축된 축소모델은 고유치 문제나 동적 해석 시 정확한 해석결과를 제공하며, 최적화 과정에서 필요한 민감도 계산에서도 정확한 결과를 제공할 수 있다. 이러한 축소모델은 모드기반으로 구축되는 축소차수모델(Reduce Order Model)과 자유도기반으로 구축되는 축소시스템(Reduced System)으로 구분되는데, 본 연구에서 사용하는 자유도 기반 축소시스템은 구조물의 거동에 지배적인 자유도를 적절히 선정하는 것이 중요하므로, 이를 위하여 기존 연구에서 신뢰성이 검증된 2단계 축소방법을 사용하였고, IRS(Improved Reduced System)에 의해 최종시스템을 구축하였다. 수치예제에서 최적화 과정에서 계산되는 등가응력, 고유치 및 설계민감도는 모두 축소시스템 기반으로 구해지며, 축소시스템을 통해 구속조건을 잘 만족하면서 목적함수에 대한 최적 결과를 얻을 수 있음을 보인다.