DOI QR코드

DOI QR Code

Effects of Shear Mixing on the Dispersion Improvement of Carbon Nanotube Fillers in Epoxy Composites

에폭시 복합재료의 강화에 사용된 탄소나노튜브의 분산 개선에 미친 전단혼합의 영향

  • Ku, Min Ye (Division of Mechanical Design Engineering, Chonbuk National University) ;
  • Lee, Gyo Woo (Division of Mechanical Design Engineering, Chonbuk National University)
  • 구민예 (전북대학교 기계설계공학부(친환경기계부품설계연구센터)) ;
  • 이교우 (전북대학교 기계설계공학부(친환경기계부품설계연구센터))
  • Received : 2012.07.03
  • Accepted : 2012.10.11
  • Published : 2012.10.31

Abstract

In this article, the effects of shear mixing on the dispersion improvement of the carbon nanotube fillers in epoxy composites were studied. Through the scanning electron microscope images showing the quantitative results and the tensile tests giving the qualitative data, we can see the dispersion improvement of the fillers. The composite specimen containing 0.6 wt% fillers shows the biggest value of tensile strength. For the tensile stiffness, the specimens containing more filler have the larger values of tensile stiffness.

본 연구는 전단혼합과 초음파 처리를 통해 충전재의 분산을 증대시켜 복합재료 시편을 만들고, 분산의 적정성을 판단하기 위해서 주사전자현미경 이미지를 이용하며, 인장실험을 통해 기계적 물성치를 측정하고 고찰하였다. 초음파 처리와 전단혼합 시간 증가를 통해서 개선된 공정으로 만들어진 시편의 경우, 충전재 분산에 대한 정성적인 평가인 SEM 이미지와 정량적인 평가인 인장시험 데이터의 상호 보완을 통해 충전재의 복합재료 수지 내에서의 적절한 분산 여부를 판단할 수 있었다. 인장강도의 측정 결과에서는 충전재가 함유된 모든 시편이 Pure Epoxy 시편 보다 높은 인장 강도를 보였는데, 충전재 0.6wt%에서 가장 높은 인장강도 값을 나타냈다. 0.9wt%와 1.2wt% 시편은 Pure Epoxy 시편보다는 인장강도가 증가하였지만 0.6wt% 시편보다 작은 값을 보였다. 인장강성 측정 결과는 충전재의 함유량이 높아질수록 증가하는 결과를 보였다.

Keywords

References

  1. Iijima, S., "Helical Microtubules of Graphitic Carbon", Nature, Vol. 354, pp. 56-58, 1991. https://doi.org/10.1038/354056a0
  2. Iijima, S., Ichihashi, T., "Single-shell carbon nanotubes of 1-nm diameter", Nature, Vol. 363, pp. 603-605, 1993. https://doi.org/10.1038/363603a0
  3. A. Thess et al., "Crystalline Ropes of Metallic Carbon Nanotubes", Science, Vol. 273, pp. 483-487, 1996. https://doi.org/10.1126/science.273.5274.483
  4. Z. F. Ren et al., 1998, "Synthesis of Large Arrays of Well-Aligned Carbon Nanotubes on Glass", Science, Vol. 282, pp. 1105-1107. https://doi.org/10.1126/science.282.5391.1105
  5. C. J. Lee et al., "Synthesis of Aligned Carbon Nanotubes using Thermal Chemical Vapor Deposition", Chemical Physics Letters, Vol. 312, pp. 461-468, 1999. https://doi.org/10.1016/S0009-2614(99)01074-X
  6. M. F. Yu et al., "Strength and Breaking Mechanism of Multi-walled Carbon Nanotubes Under Tensile Load", Science, Vol. 277, pp. 637-640, 2000.
  7. P. Kim et al., "Thermal Transport Measurements of Individual Multiwalled Nanotubes", Physical Review Letters, Vol. 87, No. 21, 215502(1)-(4), 2001.
  8. F.H. Gojny et al., "Carbon Nanotube-Reinforced Epoxy-Composites: Enhanced Stiffness and Fracture Toughness at Low Nanotube Content", Composites Science and Technology, Vol. 64, No. 15, pp. 2363-2371, 2004. https://doi.org/10.1016/j.compscitech.2004.04.002
  9. T.-E. Chang et al., "Conductivity and Mechanical Properties of Well-Dispersed Single-Wall Carbon Nanotube/Polystyrene Composite", Polymer, Vol. 47, No. 22, pp. 7740-7746, 2006. https://doi.org/10.1016/j.polymer.2006.09.013
  10. J. Xiong et al., "The Thermal and Mechanical Properties of a Ppolyurethane/Multi-Walled Carbon Nanotube Composite", Carbon, Vol. 44, No. 13, pp. 2701-2707, 2006. https://doi.org/10.1016/j.carbon.2006.04.005
  11. K. B. Shelimov et al., "Purification of Single-Wwall Carbon Nanotubes by Ultrasonically Assisted Filtration", Chemical Physics Letters, Vol. 282, No. 5-6, pp. 429-434, 1998. https://doi.org/10.1016/S0009-2614(97)01265-7
  12. K. L. Lu et al., "Mechanical Damage of Carbon Nanotubes by Ultrasound", Carbon, Vol. 34, No. 6, pp. 814-816, 1996. https://doi.org/10.1016/0008-6223(96)89470-X
  13. Y. J. Kim et al., "Electrical Conductivity of Chemically Modified Multiwalled Carbon Nanotube/Epoxy Composites", Carbon, Vol. 43, No. 1, pp. 23-30, 2005. https://doi.org/10.1016/j.carbon.2004.08.015
  14. X. Gong et al., "Surfactant-Assisted Processing of Carbon Nanotube/Polymer Composites", Chemistry of Materials, Vol. 12, No. 4, pp. 1049-1052, 2000. https://doi.org/10.1021/cm9906396
  15. J. Hilding et al., "Dispersion of Carbon Nanotubes in Liquids", Journal of Dispersion Science and Technology, Vol. 24, No. 1, pp. 1-41, 2003. https://doi.org/10.1081/DIS-120017941
  16. ASTM D638-10, "Standard test method for tensile properties of plastics," ASTM.
  17. S.-E. Lee et al., "A study on Tensile Properties of Multi-Walled Carbon Nanotube/Epoxy Composites", Journal of the Korean Society for Composite Materials, Vol. 17, No. 6, pp. 1-7, December, 2004.