DOI QR코드

DOI QR Code

Estimation of Maximum Typhoon Intensity Considering Climate Change Scenarios and Simulation of Corresponding Storm Surge

기후변화 시나리오에 따른 최대 가능 태풍강도 추정 및 이에 따른 폭풍해일고 양상 모의

  • 윤종주 (한국해양과학기술원 연안재해재난연구센터) ;
  • 전기천 (한국해양과학기술원 연안재해재난연구센터) ;
  • 심재설 (한국해양과학기술원 연안재해재난연구센터) ;
  • 박광순 (한국해양과학기술원 연안재해재난연구센터)
  • Received : 2012.05.17
  • Accepted : 2012.09.18
  • Published : 2012.11.25

Abstract

The rise in sea surface temperature (SST) as a global warming enhance overall typhoon activity. We assumed that there exist thermodynamic limits to intensity that apply in the absence of significant interaction between storms and their environment. The limit calculations depend on SST and atmospheric profiles of temperature and moisture. This approach do appear to provide resonable upper bounds on the intensities of observed storms and may even be useful for predicting the change in intensity over a long period time. The maximum storm intensities was estimated through the global warming scenarios from IPCC-AR4 report over the North-East Asia. The result shows stronger intensities according to scenarios for increase of carbon dioxide levels. And storm surge simulations was performed with the typhoons which were combined route of the typhoon Maemi (2003) and intensity as climate change scenarios. The maximum increase of storm surge heights was shown about 29~110 cm (36~65%) regionally. Especially at Masan, the result of simulated maximum surge height exceed the 200 years return period surge.

지구온난화에 따른 해수의 온도 상승은 태풍의 대형화와 강도증가의 원인이 된다. 본 논문에서는 태풍발생에 있어서의 열역학적 최대한계이론을 적용하여 미래의 기후변화 시나리오에 따른 해수온도의 상승과 기온의 수직성층분포 변화를 고려한 동북아 해역의 지역별 가능 최대태풍의 강도를 추정하였다. IPCC 4차 보고서[2007]에 제시된 기후변화 시나리오를 적용하였으며 각 시나리오에 따라 추정된 태풍의 최대 가능 강도의 결과는 최저중심기압 및 최대풍속의 공간분포로 제시하였는데, 대기 중 이산화탄소의 농도 증가에 비례하여 더 큰 최대 가능강도가 추정되었다. 또한 각 시나리오에 따른 최대 가능강도를 가지는 가상태풍에 의한 폭풍해일고를 수치모의 하였다. 가상태풍의 경로에는 태풍 Maemi(2003)를 따라 적용하였다. 산출된 폭풍해일고의 결과는 최대기후변화 시나리오의 경우, 태풍 Maemi를 모의한 경우에 비해 지역에 따라 약 29~110 cm(36~65%)의 해일고 상승이 나타났으며, 특히 마산에서는 기존의 재귀년도 200년 폭풍해일고를 최대 19cm 상회하는 것으로 나타났다.

Keywords

References

  1. Bister, M., Emanuel, K.A., 2002, "Low frequency variability of tropical cyclone potential intensity. 1. Interannual to interdecadal variability", J. Geophys. Res., 107(D24), 26(1-15).
  2. Cardone, V.J., Cox, A.T. Greenwood, J.A. and Thompson, E.F., 1992, "Upgrade of Tropical Cyclone Surface Wind Field Model", CERC-94-14, U.S. Army Corps of Engineers.
  3. Chen, C., Cowles, G. and Beardsley, R.C., 2004, An unstructured grid, finite-volume coastal ocean model: FVCOM user manual, 1st ed., Tech. Rep. 04-0601, 183 pp., School of Mar. Sci. and Technol., Univ. of Mass., Dartmouth.
  4. Chen, C., Beardsley, R.C. and Cowles, G. 2006, "An unstructured grid, finite-volume coastal ocean model (FVCOM) system", Oceanography, 19(1), 78-89. https://doi.org/10.5670/oceanog.2006.92
  5. Choi, G.Y., Kwon, W.T., Boo, K.O. and Cha, Y.M. 2008, "Recent Spatial and Temporal Changes in Means and Extreme Events of Temperature and Precipitation across the Republic of Korea", J. the Korean Geographical Society, Vol.43, No.5, 681-700.
  6. Emanuel, K.A., 1986, "An air-sea interaction theory for tropical cyclones", Part I J. Atmos. 42, 585-604.
  7. Emanuel, K.A., 1994, Atmospheric Convection. Oxford Univ Press, New York, 580.
  8. Emanuel, K.A., 1995, "Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics", J. Atmos. 52, 3969-3976. https://doi.org/10.1175/1520-0469(1995)052<3969:SOTCTS>2.0.CO;2
  9. Emanuel, K.A., Sundararajan, R. and Williams, J., 2008, "Hurricanes and global warming: Results from downscaling IPCC AR4 simulations", Bull. Amer. Meteor. Soc. 89, 347-367. https://doi.org/10.1175/BAMS-89-3-347
  10. Hur, D.S., Yeom, G.S., Kim, J.M., Kim, D.S. and Bae, K.S., 2006a, "Estimation of Storm Surges on the Coast of Busan", KSOE, Vol.20, No.3, 37-44.
  11. Hur, D.S., Yeom, G.S., Kim, J.M., Kim, D.S. and Bae, K.S., 2006b, "Storm Surge Characteristics According to the Local Peciliarity in Gyeongnam Coast", KSOE, Vol.20, No.3, 45-53.
  12. Hur, D.S., Lee, H.W., Lee, W.D. and Bae, K.S., 2008, "Storm Surge Height on Busan and Gyeongnam coastal region by an Attack of Super-Typhoon", J. Korean Soc. Coastal and Ocean Eng., Vol.20, No.1, 128-136.
  13. IPCC, 2007, Climate Change : The physical basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge Univ. Press, Cambridge, 1-996.
  14. JTWC(Joint Typhoon Warning Center), http://metocph.nmci.navy.mil/jtwc.php/.
  15. Kang, J.W., Park, S.J. and Park, M.W., 2008, "Rising Tendencies of both Tidal Elevation and Surge Level at the Southwestern Coast", J. Korean Soc. Coastal and Ocean Eng., Vol.20, No.1, 14-24.
  16. Kang S.W., Jun, K.C., Park, K.S. and Han, S.D., 2009, "Storm Surge Hindcasting of Typhoon Maemi in Masan Bay, Korea", J. Marine Geodesy, 32, 1-14. https://doi.org/10.1080/01490410802661930
  17. Kwon, J.I., Lee, J.C., Park, K.S. and Jun, K.C., 2008, "Comparison of Typhoon Wind Models Based on Storm Surge Heights Induced by Typhoon Maemi", Asia-Pacific J. Atmospheric Sciences, 44, 443-454.
  18. Large, W. and Pond, S., 1981, "Open Ocean Momentum Flux Measurements in Moderate to Strong Winds", J. Phys. Oceanogr. 11, 324-336. https://doi.org/10.1175/1520-0485(1981)011<0324:OOMFMI>2.0.CO;2
  19. Lee, J.C., Kwon, J.I., Park, K.S. and Jun, K.C. 2008, "Calculations of Storm Surges, Typhoon Maemi", J. Korean Soc. Coastal and Ocean Eng., Vol.20, No.1, 93-100.
  20. Matsumoto, K., Takanezawa, T. and Ooe, M., 2000, "Ocean Tide Models Developed by Assimilating TOPEX/POSEIDON Altimeter Data into Hydrodynamical Model: A Global Model and a Regional Model Around Japan", Journal of Oceanography, 56, 567-581. https://doi.org/10.1023/A:1011157212596
  21. Ministry of Land, Transport and Maritime Affairs, 2010, Development of Storm Surge and Tsunami Prediction System and Estimation of Design Water Level for major ports in Korea, 143.
  22. Ministry of Maritime Affairs and Fisheries, 2005, Design Standards of Harbor and Fishing Port(I)(항만 및 어항 설계 기준(상)), 159.
  23. Song, K.S. and M.B. Ha, 2007, "Disaster Measures for SUPER typhoon(SUPER 태풍에 대비한 재난 대책)", 도로, Korean Society of Road Engineers, Vol.9, No.3, 106-114.
  24. Thompson, E.F. and Cardone, V.J., 1996, "Practical modeling of hurricane surface wind field", J. of Waterway, Port, Coastal and Ocean Engineering. 122(4), 195-205. https://doi.org/10.1061/(ASCE)0733-950X(1996)122:4(195)
  25. WDC(World Data Center for Climate, Hamburg), http://cerawww.dkrz.de/WDCC/ui/Index.jsp.

Cited by

  1. Numerical Experiments of Storm Surge and Coastal Inundation by Unstructured Grid Finite Volume Model FVCOM vol.13, pp.5, 2013, https://doi.org/10.9798/KOSHAM.2013.13.5.337