DOI QR코드

DOI QR Code

에틸렌-테트라플르오르에틸렌 공중합체의 비등온 결정화 거동

Non-isothermal Crystallization Behaviors of Ethylene-Tetrafluoroethylene Copolymer

  • 이재훈 (광 에너지 소재 연구센터, 단국대학교 고분자시스템공학과) ;
  • 김효갑 (광 에너지 소재 연구센터, 단국대학교 고분자시스템공학과) ;
  • 강호종 (광 에너지 소재 연구센터, 단국대학교 고분자시스템공학과)
  • Lee, Jaehun (Center for Photofunctional Energy Materials, Dept. of Polymer Science and Engineering, Dankook University) ;
  • Kim, Hyokap (Center for Photofunctional Energy Materials, Dept. of Polymer Science and Engineering, Dankook University) ;
  • Kan, Ho-Jong (Center for Photofunctional Energy Materials, Dept. of Polymer Science and Engineering, Dankook University)
  • 투고 : 2012.07.11
  • 심사 : 2012.08.06
  • 발행 : 2012.11.25

초록

에틸렌-테트라플르오르에틸렌(ETFE) 공중합체의 비등온 결정화 거동을 DSC와 imaging FTIR을 이용하여 살펴보았다. 변형 비등온 Avrami 분석 결과, DSC에 의한 열분석의 경우 상대적으로 적은 결정화 엔탈피 변화로 인하여 Avrami 식에 의한 ln[-ln(1-X(t))] vs. ln(t) 곡선이 선형을 이루지 못하는 반면, 결정화에 의한 IR 흡수 강도 image의 변화에 의한 분석 방법인 imaging FTIR의 경우보다 선형적인 결과를 얻음에 따라 imaging FTIR이 ETFE 비등온 결정화 연구에 보다 효과적임을 알 수 있었다. 이와 함께 비등온 결정화에 의한 ETFE의 광학특성을 살펴본 결과, 서냉에 의하여 형성된 ETFE 결정의 빛 산란에 의하여 haze가 증가하며 따라서 투명도가 감소함을 알 수 있으며 비등온 결정화에 의하여 최대 8%의 투과도 감소가 일어남을 확인할 수 있었다. 이상의 결과로부터 결정화를 조절하는 냉각속도가 유리 대체 소재로 사용되고 있는 ETFE 필름의 광투과도 조절에 주요한 가공 변수임을 확인할 수 있었다.

The non-isothermal crystallization behavior of ethylene-tetrafluoroethylene (ETFE) copolymer was investigated by DSC and imaging FTIR analysis. Modified non-isothermal Avrami analysis was applied to interpret the crystallization behavior of ETFE. It was found that the less linearity in ln[-ln(1-X(t))] vs. ln(t) plot was obtained in thermal analysis comparison with imaging FTIR due to relatively small crystallization enthalpy change in ETFE. It means that imaging FTIR measured by overall IR absorption intensity change due to the crystallization was found to be effective to understand the non-isothermal crystallization kinetics of ETFE. In addition, the optical transmittance of ETFE was studied. The crystallite developed by slow cooling caused the light scattering and resulted in the increase of haze and the lowering of transmittance up to 8%. From our results, it was confirmed that cooling rate is an important processing parameter for maintaining optical transmittance of ETFE as a replacement material for glass.

키워드

과제정보

연구 과제 주관 기관 : 단국대학교

참고문헌

  1. E. Giannetti, Polym. Int., 50, 10(2001). https://doi.org/10.1002/1097-0126(200101)50:1<10::AID-PI614>3.0.CO;2-W
  2. B. Hans, Kunststoffberater, 20, 360(1975).
  3. A. Dobreva, A. Nikolov, and G. Kostov, Cryst. Res. Tech., 27, 903 (1992). https://doi.org/10.1002/crat.2170270704
  4. S. Radce, N. Del Fanti, C. Castiglioni, M. Del Zoppo, and G. Zerbi, Macromolecules, 27, 2194 (1994). https://doi.org/10.1021/ma00086a032
  5. T. Pieper, B. Heise, and W. Wilke, Polymer, 30, 1768 (1989). https://doi.org/10.1016/0032-3861(89)90344-3
  6. A. Wilson, Interface, January, 4 (2009).
  7. M. DeBergalis, J. Fluor. Chem., 125, 1255 (2004). https://doi.org/10.1016/j.jfluchem.2004.05.013
  8. H. Ashizawa, J. E. Spruiell, and J. L. White, Polym. Eng. Sci., 24, 1035 (1984). https://doi.org/10.1002/pen.760241307
  9. F. Wilson and H. Starkweather, J. Polym. Sci. Part: A-2, 11, 919 (1973). https://doi.org/10.1002/pol.1973.180110509
  10. S. Ebensajjad, "Fluoropolymer : Properties and Structure", in Fluoroplastics, William Andrew Pub., New York, Chap 2, p 18 (2002).
  11. S. Phongtamrug, K. Tashiro, A. Funaki, K. Arai, and S. Aida, Polymer, 49, 561 (2008). https://doi.org/10.1016/j.polymer.2007.11.036
  12. G. Kostov, B. Bogdanov, and Al. Nikolov, J. Thermal Analysis, 41, 925 (1994). https://doi.org/10.1007/BF02547172
  13. R. Pucciariello, J. Appl. Polym. Sci., 59, 1227 (1996). https://doi.org/10.1002/(SICI)1097-4628(19960222)59:8<1227::AID-APP4>3.0.CO;2-E
  14. R. Pucciariello and V. Villani, Polymer, 45 2031 (2004). https://doi.org/10.1016/j.polymer.2004.01.019
  15. M. Avrami, J. Chem. Phys., 7, 1103 (1939). https://doi.org/10.1063/1.1750380
  16. A. Ziabicki, Appl. Polym. Symp., 6, 1 (1967).
  17. T. Ozawa, Polymer, 12, 150 (1971). https://doi.org/10.1016/0032-3861(71)90041-3
  18. T. Liu, Z. Mo, S. Wang, and H. Zhang, Polym. Eng. Sci., 37, 568 (1997). https://doi.org/10.1002/pen.11700
  19. A. Jeziorny, Polymer, 19, 1142 (1978). https://doi.org/10.1016/0032-3861(78)90060-5
  20. M. L. Di Lorenzo and C. Silvestre, Prog. Polym. Sci., 24, 917 (1999). https://doi.org/10.1016/S0079-6700(99)00019-2
  21. J. L. Koenig, Microscopic Imaging of Polymers, ACS, Washington, DC, 1998.
  22. C. M. Snively and J. L. Koenig, J. Polym. Sci. Part B: Polym. Phys., 37, 2353 (1999). https://doi.org/10.1002/(SICI)1099-0488(19990901)37:17<2353::AID-POLB6>3.0.CO;2-Y
  23. R. Bhargava, S.-Q. Wang, and J. L. Koenig, Adv. Polym. Sci., 163, 13 (2003).
  24. A. Gupper and S. G. Kazarian, Macromolecules, 38, 232 (2005).
  25. Y. Roggo, A. Edmond, P. Chalus, and M. Ulmschneider, Anal. Chim. Acta, 535, 79 (2005). https://doi.org/10.1016/j.aca.2004.12.037
  26. K. L. A. Chan, S. V. Hammond, and S. G. Kazarian, Anal. Chem., 75, 2140 (2003). https://doi.org/10.1021/ac026456b
  27. K. L. A. Chan and S. G. Kazarian, Vibrational Spectroscopy, 42, 130 (2006). https://doi.org/10.1016/j.vibspec.2005.10.005
  28. S. G. Kazarian and K. L. A. Chan, Macromolecules, 36, 9866 (2003). https://doi.org/10.1021/ma035210l