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In this paper, a model is introduced named double relation 
chains (DRC) based on ordered sets. It is proved that using 
DRC and special relationships among the members of an 
alphabet, vectors of this alphabet can be stored and searched 
in a tree. This idea is general; however, one special 
application of DRC is the longest prefix matching (LPM) 
problem in an IP network. Applying the idea of DRC to the 
LPM problem makes the prefixes comparable like numbers 
using a pair of w-bit vectors to store at least one and at most 
w prefixes, where w is the IP address length. This leads to 
good compression performance. Based on this, two recently 
introduced structures called coded prefix trees and scalar 
prefix trees are shown to be specific applications of DRC. 
They are implementable on balanced trees which cause the 
node access complexity for prefix search and update 
procedures to be O(log n) where n is the number of prefixes. 
As another advantage, the number of node accesses for these 
procedures does not depend on w. Additionally, they need 
fewer number of node accesses compared to recent   
range-based solutions. These structures are applicable on 
both IPv4 and IPv6, and can be implemented in software or 
hardware. 
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I. Introduction 

Longest prefix matching (LPM) is the problem of finding the 
longest prefix of a w-bit address d among a set of binary 
prefixes with the maximum length of w bits stored in a router’s 
routing table. A straightforward algorithm to find the longest 
matching prefix (LMP) of a given address is a linear search [1]. 
If n is the number of the prefixes, the complexity of this 
algorithm will be O(n), which is not acceptable for large 
databases. Using a radix tree or Trie [1] in which each tree edge 
corresponds to one bit, the search and update complexities 
become O(w), where w is 32 for IPv4 and 128 for IPv6. This is 
better than a linear search, but the search and update 
complexities of Trie are not acceptable for high-speed switches. 
Some other versions of Trie, such as PATRICIA [2], level 
compressed Trie (LC-Trie) [3], prefix expansion [4], and 
longest prefix first search table (LPFST) [5]-[7] have also been 
introduced. However, some of them suffer from similar 
drawbacks in that they do not support incremental updates, and 
others are not extendable to IPv6. 

In later research, some range-based algorithms were 
introduced which define two end points for each prefix and 
store these end points in a tree [8]. By defining a range for each 
prefix, the search in the tree is carried out to find the most 
specific range corresponding to an address [8]. The node access 
complexity of the search procedure in this structure is 
independent from w. Range-based prefix search algorithms 
need a long time for prefix updates, even for those algorithms 
which use balanced trees to store the prefix end-points [9]. To 
support fast search and incremental updates, some range-based 
algorithms were introduced by the authors of [10] among 
which prefixes in B-tree (PIBT) has the best search 
performance [10]. Since, PIBT stores the prefix end-points in a 
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B-tree, its search and update complexities are O(log n). It 
should be mentioned that PIBT uses about 6 w-bit vectors 
excluding the tree child pointers for each prefix. One of the 
recent range-based lookup algorithms with comparable 
average results to PIBT is balance tree with LPFST (BTLPT) 
[11]. This algorithm uses two structures: a B-tree and another 
LPFST. However, the complexity of BTLPT still depends on w 
because of its Trie-based part, LPFST.  

Prefix trees and M-way prefix trees [12] are other algorithms 
which use a new comparison rule for storing and searching the 
prefixes resulting in a tree with the worst case tree height of 
O(w) and long update procedures.  

We introduced new algorithms called coded prefix B-tree 
[13] and scalar prefix trees [14] and later, a complete version of 
[14] with more details and simulation results [15]. These 
schemes consider a coding concept for prefixes to make them 
comparable to numbers with =, <, and > and to store them in 
tree structures and particularly in balanced trees like B-tree. 
Also, we proved that the proposed algorithms do not modify 
the number of node accesses of the original search and update 
procedures of the trees. This makes the number of node 
accesses of the search and update procedures independent from 
the IP address length and leads to O(log n) tree operations 
which will be efficient for both software and hardware 
implementations. Lim and others demonstrated a similar search 
procedure to [13], [14] which also uses a balanced tree [16]. 
However, the main advantage of our algorithm is the ability of 
simple incremental updates with limited worst case time 
compared to the hard and unpredictable time of updates in [16]. 
Also, in the proposed data structure of scalar prefix trees, 
unlike the method of [16], each prefix exists only in one place 
of the tree. This makes the insertions and deletions easier. 
Another advantage of the proposed data structures compared to 
[16] is that they can be applied on many types of trees, 
especially balanced trees like B-tree, RB-tree, and AVL-tree, 
without affecting the O(log n) order of number of tree node 
accesses in prefix insertion and deletion procedures.  

This paper introduces a mathematical model for the main 
idea of [13]-[15] using the concept of totally ordered sets [17] 
and extends it to a wide range of search trees. In this regard, the 
novel concept of double relation chains (DRC) is proposed to 
be used for modeling the scheme. The result can be extended to 
all versions of the algorithm which use B-tree, RB-tree, and 
AVL-tree. Finally, the results are compared with some 
competitive algorithms like PIBT, BTLPT, and LPFST for 
both IP versions 4 and 6.  

The structure of the paper is as follows. The idea of DRC 
and its properties are introduced in section II. Also, it is shown 
that the LPM problem is a special application of DRC. Section 
III proposes coded prefix and scalar prefix tree structures 

derived from the concept of DRC. Comparison results and the 
conclusion are presented in sections IV and V, respectively. 

II. Introduction of DRC Using the Concept of Totally 
Ordered Sets 

Before introducing DRC, we define a prefix comparison rule. 
First, consider the following inequality in which β is the 
representative of blank space: 0β ≤ ≤ 1. 

Using this inequality, variable length prefixes can be 
compared. For example, consider the following prefixes: 
p1=010000*, p2=0100011, p3=01000*, p4=0100*, p5=010*, 
and p6=00*. 

Using the mentioned inequality, these prefixes can be sorted 
in the following order: p6 ≤ p5 ≤ p4 ≤ p3 ≤ p1 ≤ p2.  

Therefore, they can be stored in any search tree. To explain 
our idea, we consider the binary search tree (BST). Assume 
that the above prefixes should be inserted into a BST with this 
order: p1, p2, p3, p4, p5, p6. 

Figure 1(a) shows the result of the insertion process. Since 
the prefixes can be stored in a search tree, it is enough to run 
the tree search algorithm to find a specific prefix. However, 
there is an issue as to whether the structure is capable of 
searching the LMP of an address. 

To resolve this concern, consider the incoming address 
d=0100010. Searching d in the tree of Fig. 1(a) traverses nodes 
A and C. Obviously, none of the prefixes stored in these two 
nodes is the prefix of d. Therefore, the ordinary search 
algorithm cannot find the LMP of an address. All of the 
prefixes of d, 010*, 0100*, and 01000*, are located in the left 
subtree of node A, but the search algorithm traverses the right 
subtree. However, an interesting hidden property exists in this 
tree which makes it capable of finding the LMP by storing 
additional information in each node. This property is as follows. 

Node A which contains p1 is the separation point of the  
 

 

Fig. 1. (a) Example of inserting prefixes in a BST using proposed
comparison rule and (b) CP-BST. 
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search path of d and the search path of some of the prefixes of 
d. However, each of these prefixes (p3, p4, and p5) is a prefix of 
p1, which is stored in node A. 

In this paper, we will prove that each prefix of d which is 
missing in the search path will also be a prefix of at least one 
key in the search path of d. One of these keys is the one which 
is stored in the separation point. Therefore, this key contains 
some additional hidden information about all of the missed 
prefixes of d. This information makes the search procedure 
capable of finding all of the prefixes of d in the tree. Using this 
proof, the coded prefix trees and scalar prefix trees will be 
introduced. The proof is done using a novel concept named 
DRC. As it will be discussed, the prefixes will be modeled as 
vectors of the alphabet of 0, 1, and β. 

Before introducing coded prefixes and scalar prefixes, some 
properties will be introduced using the concept of totally 
ordered sets [17]. Consider a set P such that 

P={p1, p2, p3,...,pn}.                (1) 
Assume that P is totally ordered under the relation Rt. Also, 

assume that a partial order [17] relation Rp over P exists which 
has the following relation with Rt (a and b are members of P):  

aRpb ⇒ aRtb.                  (2) 

Also, assume that the set P is the union of k subsets in 
equality (3) with the condition (4):  

1 ,i k
i iP P=
== ∪                     (3) 

, , ; .i jP P i j i j= ∅ ∀ ≠∩               (4) 

Also, consider the number of members of Pi, namely, n(Pi) 
with the following property: 

n(Pi) ≤ w; 1 ≤ i ≤ k.                   (5) 
Finally, assume that each Pi is a totally ordered set (chain) 

[17] under the relation Rp. This also implies that each member 
of P has the relation Rp with itself. Note that the subsets Pi 
which meet (3), (4), and (5) are not unique. Using (1) and (2), a 
simple property can be retrieved, and since we use it in our 
next sections, we state it as a lemma. Also, note that (3), (4), 
and (5) will be used in section IV. 

Lemma 1. Consider the definitions of P, Rt, and Rp which 
were stated above and a, b, and c as members of P. Assume 
that aRtb and bRtc. Also assume that aRpc. Using these 
assumptions, the conclusion aRpb will not always be true. 

Proof. This is proved using a contradictory example. Assume 
that Rt is the relation ≤ and Rp is the relation |, that is, the 
relation of counting, for example, 2|8 means that 2 counts 8. 
Consider N as the reference set. These relations (≤ and |) meet 
(2). Therefore, the required condition for Rt and Rp is met. As a 
contradictory example, assume that a=2, b=3, and c=4. In this 
case, 2|4, that is, 4 mod 2 = 0. However, 2|3 is false.        □ 

In this stage, we need to define DRC. 

 

Fig. 2. Condition of DRC. 
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Fig. 3. Illustration of property 1. 
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Fig. 4. Illustration of property 2. 
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Definition 1. Consider the set P in (1). Assume that P is a 
chain under the relation Rt and (2) holds for relations Rt and Rp. 
Assume that (3), (4), and (5) hold for Rp. We call (P, Rt, Rp) (the 
set P under relations Rt and Rp) a DRC if the following 
condition is met for , , :a b c P∀ ∈  

(aRt b, bRtc, aRpc) ⇒ aRpb .         (6) 
Figure 2 illustrates (6). The relations are shown on a line and 

a, b, and c are some members of the chain constructed by   
(P, Rt). Also, a, b, and c are not required to be consecutive 
members. Therefore, any numbers of members are allowed to 
be between them. 

1. Properties of DRCs 

Based on the definition of DRC, the first property is trivial.  
Property 1. Consider the set P and the relations Rt and Rp in 

a DRC as defined in definition 1. If the following conditions 
are met: 

• x, y∈P, xRpy  
• There are other m members of P between x and y in the 

chain constructed by P and the relation Rt. Then, x will 
have the relation Rp with all of the other m members.  

Figure 3 is an illustration of property 1. The following 
property is also a result of property 1. 
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Property 2. Consider set P and the relations Rt and Rp in a 
DRC. Also, consider that all members of P which are totally 
ordered under the relation Rt are shown on a line, similar to a 
Hasse [17] diagram. Then, consider an arbitrary member t from 
the members of P. Using the result of property 1, it can be 
proved that all members, for example, x with the property of 
tRpx, are consecutive to each other on a segment of the line (Fig. 
4). The proof of this property is trivial. 

Now, consider set A with N+1 members: 
A={α0, α1, α2, ..., αN}.                (7) 

Assume that α0=β, and A is a totally ordered set under a 
relation shown by ≺ and with the order of (7). The ordered 
vector V is defined as  

1 2( , ,..., ), , .w iV v v v i v A= ∀ ∈             (8)  

Consider two vectors V and V' using the definition of (8). 
The relation Rt is defined recursively as 

1 1

1 1 2 2

(( ) or
(( ) and ( ,..., ) ( ,..., ))).

t

w t w

V R V v v
v v v v R v v

′ ′⇔
′ ′ ′=

<
    (9) 

Also, the relation Rp is defined as 

, (( ) or ( ) ).p i i iV R V i v v v β′ ′⇔ ∀ = =        (10) 

In this case, it can be verified easily that Rt and Rp have the 
following relation which is exactly the same as (2). 

     .p tV R V V R V′ ⇒               (11) 

Now, consider a set P which is defined as 

1 2{ ( , ,..., ), , }.w iP V V v v v i v A= = ∀ ∈         (12) 

It can be easily verified that both (P, Rt, Rp) and (P', Rt, Rp) 
are DRC where P' is an arbitrary subset of P (this can be 
proved by considering the definition of DRC). Since P' is 
totally ordered under the relation Rt, any input vector can be 
searched inside it using ordinary search schemes. Now, 
consider vector d such that d= (d1, d2, d3, ..., dw), ∀i; di∈A.  

Since the set P and every subset P' of P are totally ordered 
sets under the relation Rt, adding d to the set P' will not modify 
this property. Therefore, d has a fixed place on the line of 
members of P' (Fig. 5). Now, if we assume that d is inserted in 
the line as it is shown in Fig. 5, and if we define the set M as 

M ={pi∈P' ; piRpd},             (13)  
then, it can be proved easily that M is a partially ordered set 
[17] (POSET) under the relation Rp. The minimal and maximal 
members of M might be indicated as pm and pM. Bearing in 
mind that d is not really inserted in this line, Fig. 5 shows its 
location virtually. Based on Fig. 5, assuming pj is the 
immediate member before d, then 

pM Rp d, pM Rt pj, pj Rt d.            (14) 
Based on property 2 and (14), it can be verified that for every  

 

Fig. 5. Virtual insertion of vector on line. 

pnd PM
p1 Pj Pj+1 Pm

Rp Rp 

 
 
pi (including pj) between pM and d on the line of Fig. 5, the 
following relation exists: 

pMRppi.                     (15) 

2. Main Objective 

In the following sections, it will be proved that to propose an 
LPM algorithm based on the above considerations, it is 
necessary to find PM, the maximal member of the set M 
defined in (13), for a given d. First, we assume that we need to 
find the location of d on the line. 

Lemma 2. To find the location of d on the line, using any 
search algorithm, if the search algorithm starts from any point 
on the line of Fig. 5 between p1 and pn, at least one pi will be 
encountered that meets the conditions piRtd and pMRppi . 

Proof. To find the location of d on the line, the search should 
finally meet both pj and pj+1 which would be the immediate 
neighbors of d if it was inserted on the line. Since based on (15) 
pMRppj, at least one member, pj, with the mentioned property 
will be seen in the search procedure.                     □ 

Based on the result of lemma 2, at least one pi meeting the 
condition pMRppi will be encountered in the search procedure. 
Since pMRppi, if some additional information could be stored 
with pi, indicating the existence of members such as pk with the 
property pkRppi, then it would not be necessary to find pM itself. 
It would be sufficient to extract the additional information of 
the first pi, seen in the search path with the property of pMRppi. 

Since the vectors are related to each other by the relation Rt, 
it is possible to store the vectors in a tree-based structure to 
decrease the search time. To show how to store the vectors, 
consider subset P' of set P as it was described in section II.1. 
Since P' is totally ordered under relation Rt, Rt can be modeled 
by the relation ≤ for a set of numbers, for example, the set of 
natural numbers N or one of its subsets. Therefore, the  
members of P' can be stored in a tree structure. However, it 
should be ensured that searching on the tree does not miss the 
vectors pi with the property of piRpd. This directly depends on 
the insertion algorithm of the vectors with additional 
information and the following lemma. 

Lemma 3. Consider a DRC (P', Rt, Rp). Assume that the 
members of P' are inserted into a binary search tree with an 
arbitrary order. Consider d as an input vector and assume that 
the objective is to search d in the tree. If pi is a member of P' 
stored in the tree and also piRpd, then at least one vector q will  
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Fig. 6. Proof of lemma 3. 
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be found in the search path of d with the property of piRpq. 

Proof. If pi is in the search path of d, the lemma is proved. 
Assume that the search path of pi is separated from the search 
path of d in a node containing a vector, for example, q. Also, 
the following relationships can be verified from Fig. 6 and the 
assumptions of the lemma: piRtq, qRtd, piRpd. Based on 
property 1 and the DRC (P', Rt, Rp), we can conclude piRpq. 
Therefore, in the search path of d, at least one vector q will be 
found for which we have piRpq.                        □ 

Therefore, to find the maximal member of M in (13), it is 
required to store additional information with each stored vector. 
The following example clarifies the problem. 

Example 1. Consider an input vector d and the set of stored 
vectors P={p1, p2, p3, p4, p5, p6}. Also, consider the following 
relations between the members of P: (a1) p6 Rt p5 Rt p4 Rt p3 Rt p1 Rt p2 
and (a2) p5Rpp4Rpp3Rp p1. 

Assume that the vectors will be inserted into the tree with the 
following order: (a3) p1, p2, p3, p4, p5, p6.  

Finally, assume that the objective is to find the maximal 
member of the set M defined in (13) under the relation Rp using 
the following additional considerations for d: (a4) p1Rtd, p3Rpd 
based on (a2) and (a4), in this example M={p3, p4, p5}. 

To solve the problem, the binary search tree of Fig. 7 is 
constructed based on the order of (a3). The search path of d is 
shown in the same figure based on (a1), (a2), (a3), and (a4). 
Clearly, the maximal member of M is p3, which is not in the 
search path. However, p1 exists on the search path of d and 
based on (a2), p3Rpp1. Also, based on (a2) and according to the 
transitivity property of POSETs [17] under the relation Rp, we 
can say p3Rpp1, p4Rpp1 and p5Rpp1.  

Therefore, the set of the vectors pi with the property of 
piRpp1 which also meet piRpd will be N={p3, p4, p5}. Based on 
(a4) and considering N, we can conclude that N is a subset of 
M (in this example, N=M). If the vectors pi with the property 
of piRpp1 could be stored with p1 as some additional 
information (Fig. 7), then none of the members of M would 
be missed in the search path of d. Finally, the answer to the 
problem, p3, which is the maximal member of M, will be 
found in the root node of the tree. This result is the same as 
the result we saw in the similar example of prefixes of    
Fig. 1(a). As it will be clarified in the following section, LPM  

 

Fig. 7. Vectors inserted in tree structure. 
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is a special application of DRC. 

A. LPM: Special Application of DRC 

In this stage, we will focus on a special application of DRC 
to the LPM problem. Consider set A as a special case of (7): 

              A = {β, 0, 1},                  (16) 
where β is the blank space.                        

Also, consider P, a special case of (12) and its subset P': 

1 2{ ( , ,..., ), , },w iP V V v v v i v A= = ∀ ∈        (17) 

{ , (( ), ( , , ))}.j kP V V P v k j k w vβ β′ = = = ⇒ ∀ < ≤ = (18) 

From the definition of P', we will show that it is a set of 
binary prefixes of different lengths. Also, according to the 
relation ≺ which is defined for (7), the same relation would be 
true for (16). Therefore, it can be concluded that 

 β ≺ 0 ≺ 1.                 (19) 
Now, based on (9) and (19), it can be simply verified that the 

relation Rt is the comparison of w-bit strings with the alphabet 
of (16). Also, based on (10), (16), and (18), VRpV' means that V 
is a prefix of V'. Based on these discussions, a novel LPM 
algorithm will be introduced and its performance will be 
evaluated in the following sections. 

III. Coded and Scalar Prefix Search: Applications of 
DRCs 

In the previous section, we showed that using the alphabet of 
(16), the set P' in (18), and also the relations Rt in (9) and Rp in 
(10), (P', Rt, Rp) will be a DRC describing the prefixes with 
different lengths and their relations. For this application, we use 
some new notations for Rt and Rp as follows: The symbol ≤  
will be used for relation Rt. The symbol → will be used for 
relation Rp. As an example, consider w=5. To represent a 
member of P', such as V= (v1, v2, v3, v4, v5) = (0, 0, 1, β, β), we 
can show it with 001ββ and simplify it by replacing the ββ at 
the end with * to show this vector with 001*. Now, let us 
clarify the concept with the following examples. 

Example 2. Consider P' as the set of the following prefix  
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Fig. 8. Example of property 2 for prefix vectors. 
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vectors: P' ={0*, 01*, 011*, 010*, 10*, 110*, 1*}. 

Since (P', Rt) (that is, (P', ≤)) is a totally ordered set, we can 
write the members of P' ordered: 0* ≤ 01* ≤ 010* ≤ 011* ≤ 1* 
≤ 10* ≤ 110*. 

As examples of members related by Rp, we can say 0*→01*, 
01*→011*,.… 

Now, to check the correctness of property 2 for this DRC, 
assume that the ordered prefixes are shown on an ordered line 
(Fig. 8). Based on this figure, all the prefixes p such that 0*Rpp 
(0*→p) are adjacent to each other on this line. Looking at the 
continuous bolded lines in Fig. 8, this fact also holds for 01* 
(01*→01*, 01*→010*, 01*→011*), 1* (1*→1*, 1*→10*, 
1*→110*). This example completely matches with property 2. 

Example 3. Mapping example 1 to this DRC, consider that 
(i) w=7 and d=0100010 and (ii) p1=010000*, p2=0100011, 
p3=01000*, p4=0100*, p5=010*, and p6=00*. 

Also, let us assume that the objective is to find LMP(d) in the 
above set of prefixes. Checking this set, it is clear that LMP(d) 
is p3. However, we try to find this answer using example 1. 
Finding the LMP(d) from the set of prefixes is equivalent to 
finding the maximal member of the set M in example 1. 
Therefore, the search process will be the same as example 1. 
Also, it is required to store the information of all prefixes of p1 
in the root node. Therefore, the information about the existence 
of the following set of prefixes should also be stored in the root 
node: {p3, p4, p5}={01000*, 0100*, 010*}. 

Replacing all pi stored in the tree of Fig. 7 by the prefixes of 
this example and comparing d with the root node prefix 
010000* results in searching its right hand child. This is the 
same as Fig. 1(a). While LMP(d)=p3 is missed from the search 
path, this problem is solved by the additional information 
stored in the root of the tree which indicates the existence of p3 
as well. It means that storing the additional information in each 
node causes the search to find the correct answer in a single 
downward pass. For example, the additional information 
which is stored in node A of Fig. 1(a) is p3, p4, and p5. The 
existence of these prefixes can also be indicated using a w-bit 
match vector to reduce the memory size. The resulting tree is 
called a coded prefix tree. In order to manage the available 
space, the details of insert, search, and delete functions of 
coded prefix trees are omitted. Instead, we focus on its 

improved version, scalar prefix tree, which will be explained in 
next subsections. However, it is worth mentioning that coded 
prefix trees are implementable on many types of tree structures, 
especially on balanced trees. We have implemented the scheme 
on B-tree (coded prefix B-tree: CP-BT), RB-tree (coded prefix 
RB-tree: CP-RB), and AVL-tree (coded prefix AVL-tree: CP-
AVL) without any changes in the number of node accesses for 
ordinary search and update functions of the trees. The details of 
tree operations in CP-BT are discussed in [13]. 

1. Scalar Prefix Trees 

Figure 1(a) shows the coded prefix tree. Although p3, p4, and 
p5 are prefixes of d, the search function of d does not traverse 
nodes B, D, and E, which are the representatives of p3, p4, and 
p5, respectively. However, the existence of these prefixes is also 
indicated in node A, which is located in the search path. 
Therefore, it suffices to store the existence of such prefixes in 
node A only, and nodes B, D, and E can be removed from the 
tree. This causes the tree to become more compressed and 
faster in search and update procedures. Although the  
algorithm and its structure were given by an example, we have 
proven its correctness in [14]. This new kind of storing of  
prefixes is the basis of scalar prefix trees. To introduce scalar 
prefix trees, first, let us define some notations:  

• len(p) shows the length of a prefix p.  
• p(i) shows the i-th bit of prefix p. 
• For each prefix p with len(p)=k and k<w, we add w-k zero 

padding and we call it key and show it as key(p) or keyp 

which will be inserted into the tree instead of the original 
prefix: key(p)=p(0)p(1)p(2)…p(k–1)000…0. For example, 
if w=4 and p=101*, then: key(p)=1010. 

• The notation p → q shows that p is a prefix of q. 
• The notation p! → q indicates that p is not a prefix of q. 
• If p! → q and q! → p, then p and q are called disjoint 

prefixes. 
• A prefix of p with the length of k is shown by prefk(p).  
• For a key r, a w-bit match vector is defined and abbreviated 

with r.mv for both coded prefix and scalar prefix trees. This 
vector stores the additional information of each prefix 
which was mentioned above. The i-th bit of r.mv is called 
r.mv(i). If r.mv(i)=1, it means that there exists a prefix q of r 
with the length of i+1, len(q)=i+1, or q=prefi+1(r) in the 
database. Please note that indexing the match vector bit 
numbers starts from 0. For an example of the match vector, 
consider the set of prefixes in the root node of Fig. 1(a). The 
pair (match vector, key) of this node can be stored like its 
corresponding node in Fig. 1(b): (0011110, 0100000). In 
mv=0011110, mv(2)=1 is a representative for p5=010* and 
mv(3)=1 is a representative for p3=01000*. 
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• The longest prefix of each key indicated by its match vector 
is called the max-length prefix of that key and is shown by 
MP(key). The largest i such that key.mv(i)=1 shows that the 
length of MP(key) is i+1. Again consider (match vector, 
key) the pair of the root node of Fig. 1(b) as mentioned 
above. mv(5)=1 is a representative for p1=010000* as the 
max-length prefix of 0100000. 

• The length of the path from the root of the tree to a node x 
is called height(x). For example, height(root) is zero, and 
the height of each child of the root is one and so on. 

Consider Fig. 6 and the proof of lemma 3. Assume that the 
prefixes of the set P' are inserted into a binary search tree with an 
arbitrary order. Consider d as an input IP address and assume that 
the objective is to search LMP(d) in the tree. If pi is a member of 
P' stored in the tree and pi→d, based on the proof of lemma 3 
and Fig. 6, if the search path of pi is separated from the search 
path of d in a node containing a vector, for example, q, the 
relation pi→q will always be true. Based on this property, we 
introduced coded prefix trees at the start of section III. Since the 
existence of pi is indicated by both match vectors of pi and q, 
key(pi), whose max-length prefix is pi and is located in the left 
subtree of q as it is also depicted in Fig. 6, can be removed from 
the tree, because its information is redundant compared to q.  

Scalar prefix trees are introduced based on the idea of 
removing all such redundancies and compressing the coded 
prefix trees as much as possible. Removing these redundancies 
causes the prefixes of each node to become completely 
different from the other nodes, that is, each node’s key and its 
match vector are representatives of a set of prefixes that do not 
exist in any other node. 

Considering P as the set of all prefixes and Pi as the set of 
prefixes of keyi stored in the tree based on its match vector, the 
following union will be true. This means that each key and its 
match vector correspond to one set Pi. Note that 

1 .i k
i iP P=
== ∪                     (20) 

Since the prefixes which are stored in the match vector of 
each key do not exist in the match vector of any other key, it 
will be concluded that 

, , ; .i jP P i j i j= ∅ ∀ ≠∩              (21) 

Also, each Pi contains at most w prefixes. It results in  
n(Pi) ≤ w.                 (22) 

Considering (20), (21), and (22), it can be easily verified that 
these equations are the same as (3), (4), and (5) in section II 
with the same meanings. 

The idea of scalar prefix trees is also applicable to many 
types of trees including balanced trees such as B-tree, RB-tree, 
and AVL-tree by some modifications in their search and update 

procedures. However, to simply describe the main idea, we 
explain its application to a binary search tree and call it scalar 
prefix binary search tree (SP-BST). For the details of its 
application to the two versions of B-tree (SP-BT and SP-BTe), 
RB-tree (SP-RB), and AVL-tree (SP-AVL), and also the major 
modifications in the search and update procedures of these 
trees, refer to [14].  

A. Insert Procedure for SP-BST 

The insertion procedure for SP-BST is explained in [14] and 
[15] in detail. What follows is a brief review. 

Insertion of each prefix in the tree is similar to the insertion 
procedure in a binary search tree. However, during the 
insertion of each prefix p, one of the following cases may occur 
in each node r of the insertion path which contains a key keyr: 

 
If p→MP(keyr), then keyr.mv(len(p)–1)= 1. 
Else if  MP(keyr) → p, then: 

       keyr.mv(len(p)–1)=1 and keyr = key(p). 
  Else 

The algorithm is repeated till it is terminated or reaches
a leaf node.  

Further details of the insertion algorithm are in [14] and [15]. 
For an example of the insertion process, consider the prefixes 

of example 3 with the same order of arrivals. Figure 9 shows 
the tree after the insertion of the above prefixes. Comparing Fig. 
9 with Fig. 7 (or Fig. 1(b)), the SP-BST of the above prefixes 
shows a good compression ratio and also a shorter tree height 
compared to coded prefix trees.  

Details of the prefix deletion procedure for SP-BST can be 
found in [14] and [15]. 

B. Search Procedure for SP-BST 

The search procedure for the LMP(d) is started from the root 
and may be finished in a leaf or non-leaf node. First, consider a 
w-bit match vector for d, called d.mv and assume that the 
search is being done in a node r containing a key named keyr. 

Although the search procedure is explained in [15], it is 
summarized here by a simplified pseudocode. 

 
If MP(keyr) → d, then: LMP(d)=MP(keyr).  
Else if some other prefixes of keyr match with d, the

corresponding bits in d.mv will be set to one. 
Then, the procedure goes to right or left child of the
current node, based on the result of comparing d
and keyr.  

For example, assume that the objective is to find LMP(d) in 
Fig. 9 considering d=0100010. The search starts from the root 
node in which Keyr=0100000 is stored and MP(Keyr)! → d. 
However, since some other prefixes of Keyr match with d, their 
corresponding bits in d.mv will be set to one. Therefore,  
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Fig. 9. SP-BST for prefixes of example 3. 
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d.mv=0011100. Then, since d > Keyr, the right child should be 
checked. It does not contain any new matching prefix of d. The 
procedure terminates after checking the match vector and key 
in node C and LMP(d)=01000* which corresponds to the least 
significant one in d.mv.  

As another example, consider d=0100001. Checking the root 
node, MP(Keyr)→d (010000*→0100001). This guarantees 
that LMP(d)=MP(Keyr)=p1=010000*. In this case, it is not 
needed to continue traversing the tree. 

C. Properties of Scalar Prefix Trees 

Based on the search and insert procedures, SP-BST has 
some properties listed below. The proofs of parts (i), (iv), and 
(v) are omitted because of space limitations. 

(i) Lemma 4. The max-length prefixes of all node keys in 
the tree are disjoint.  

For example, in Fig. 9, the disjoint max-length prefixes 
of the nodes are 010000*, 0100011, and 00*. 

(ii) Lemma 5. In a scalar prefix search, any time the search 
for address d reaches a key k whose max-length prefix is 
a prefix of d or if p=MP(k) and p→d, then p will be the 
LMP(d) and therefore the search will be terminated. The 
proof is explained in the appendix. 

(iii) A prefix is stored in the match vector of only one key in the 
tree. This is the direct result of the insertion algorithms and 
the relations (20), (21), and (22) (or (3), (4), and (5) of 
section II). 

(iv) Lemma 6. To store a new prefix p in SP-BST, let us 
assume that K= {k1, k2, k3,. . . , kn} is the set of all keys in 
the tree which p is a prefix of them. If among the 
members of K, kj∈K is the key with the least height node, 
then the prefix p will be stored only in the match vector 
of kj and kj.mv(len(p)–1) will be set to one.  

(v) Lemma 7. Again assume that K= {k1, k2, k3,. . . , kn} is the 
set of all keys stored in the tree in which p is a prefix of 
them, and among its members, kj is the key whose node 

has the least height. Then, for any arbitrary address d 
such that p→d, the search path of d will cover the node 
containing kj. 

(vi) Consider the same definitions for prefix p, the set K and 
the key kj in properties (iv) and (v). Also, consider an 
address d such that p→d. Based on lemma 6, kj is the 
first member of K which is seen in the insertion path of p. 
Also, based on the lemma 7, it is the first member of K 
which is seen in the search path of d. Therefore, in order 
to store p in the tree, its existence should be indicated in 
the match vector of kj. On the other hand, the search 
procedure of d will reach kj in the search path before any 
other member of K and kj.mv(len(p)–1) will indicate if p 
is stored in the tree or not. This means that kj and its 
match vector have all the information about p and make 
these procedures independent of the other members of K 
and their match vectors. Therefore, with respect to p, we 
call kj the master key for all of the other members of K 
located in its subtrees. Also, the other members of K in 
the subtrees of kj are called the slave keys. The reason for 
this naming is that with respect to p, kj and its submatch 
vector overrule all of the information stored in its 
subtrees.  

Based on the above properties, up to w prefixes can be stored 
in a key. Therefore, if np is the number of prefixes and nk is the 
number of the node keys in the tree, then it is always true that 
nk ≤ np. The equality holds only when all of the prefixes are 
disjoint. This causes the tree to become more compressed if the 
percentage of non-disjoint prefixes increases. The reason is that 
disjoint prefixes will be stored in the tree as the main prefix of a 
single key. If the percentage of non-disjoint prefixes increases, 
most of the prefixes will be stored in the match vectors of the 
disjoint prefixes. Therefore, they do not need additional storage. 
This can make the tree compressed. Current IPv4 prefix 
databases contain less than 10% of non-disjoint prefixes. 

The SP-BST has many advantages compared to Trie-based 
and range-based algorithms. A key of SP-BST may contain up 
to w prefixes. Therefore, the average height of the tree is 
reduced. On the other hand, since all of these prefixes are 
stored in the match vector of one key and also this tree does not 
need to store both of the end points, the average storage would 
be reduced as well. 

Since there is no guarantee for SP-BST height, the concept 
of scalar prefix search has been applied to some balanced trees, 
such as B-tree (SP-BT), RB-tree (SP-RB), and AVL-tree (SP-
AVL), without any changes in their original number of node 
accesses in the search and update procedures. They have the 
ability to guarantee and control the worst case height of the tree 
to be O(log n). Therefore, the search and update complexities 
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for these trees are O(log n) as well. We have explained the 
details of the search and update procedures of SP-BT in [14]. 

IV. Comparison Results 

Different versions of the proposed algorithms were 
implemented for IPv4 and IPv6 databases in software, and their  
results were presented in [14] and [15]. In this paper, some 
complementary results are included based on comparing the 
proposed B-tree schemes with competing solutions like PIBT 
and BTLPT. 

Three IPv4 and two IPv6 databases of different sizes are 
used for the simulations. The IPv4 prefix databases are AS4637 
(139519 prefixes, August 2008), AS1221 (191566 prefixes, 
August 2008), and AS131072 (313453 prefixes, January 2010) 
which were downloaded from [18]. The IPv6 prefix databases 
[18] are AS1221 (933 prefixes, August 2008) and AS131072 
(2523 prefixes, January 2010). 

In [15], the search and update results were presented in terms 
of the average number of node accesses to ensure that the 
results are independent from the CPU model, cache size, or 
other restricting issues and also to give a proper indication of 
the hardware implementation efficiency. 

In this paper, the results are presented in terms of the worst 
case prefix search and update results of the proposed B-tree  
 

 

Fig. 10. Worst case node accesses results of search procedures for
B-tree schemes (IPv4 and IPv6 databases). 
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schemes in comparison with PIBT and BTLPT. The results are 
obtained by repeating the test scenarios several times using 
random ordering for the members of the databases. Also, since 
the storage requirements are similar to the results of [15], they 
are not included in this paper. 

To find the storage requirements, initially, all of the prefixes 
of each database were inserted. Then, to find the number of 
node accesses for each of the insertion and deletion procedures, 
each prefix was deleted and inserted again. For each time of 
doing the insertion or deletion procedure, its number of node 
accesses was recorded and the worst case numbers of node 
accesses for the insertion and deletion were finally extracted. 

Although the results would not be different in the general 
case for different branching factors of the B-tree, the minimum 
degree of the B-tree is considered to be 14 in this paper for the 
proposed algorithms, PIBT and BTLPT. 

The worst case number of node accesses for the search 
procedures of IPv4 and IPv6 databases are depicted in Fig. 10. 
As shown in Figs. 10(a) and (b), the required number of node 
accesses of the search procedure of SP-BT is the best for all 
three databases. The CP-BT also has comparable results. 

Note that unlike the presented average case performances of 
these algorithms in [15], in the worst case, the search procedure 
of BTLPT is degraded by a big factor due to its dependency on  
 

 

Fig. 11. Worst case node accesses results of insertion procedures
for B-tree schemes (IPv4 and IPv6 databases). 
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Fig. 12. Worst case node accesses results of deletion procedures
for B-tree schemes (IPv4 and IPv6 databases). 
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Trie-based search of its LPFST part. A similar situation exists 
for the worst case insertion and deletion procedures of the 
PIBT which is depicted in Fig. 11(a) and Fig. 12(a) for the IPv4 
database and Fig. 11(b) and Fig. 12(b) for the IPv6 database. 

Although the search performance of the proposed schemes is 
very much similar to PIBT, their update performance is 
superior compared to PIBT and BTLPT. However, BTLPT 
requires the least storage as it was mentioned in [15]. Also note 
that, although BTLPT has the worst performance in most cases 
of Figs. 10, 11, and 12, it has a better average case update 
performance than PIBT [15]. 

V. Conclusion 

In this paper, the novel idea of DRC was presented. Using 
this scheme, our recent work on the longest prefix matching 
algorithms was completed and modeled. Based on this idea, 
two sets of search trees named coded prefix and scalar prefix 
trees were shown to be examples of DRC. This will allow the 
treatment of prefixes as numbers and their storage in ordinary 
trees, which is a new approach compared to range-based and 
Trie-based solutions. This kind of treating prefixes makes the 

trees capable of fast search and incremental updates while the 
required storage has comparable results to other competitive 
solutions. Coded and scalar searches were implemented on  
B-tree, RB-tree, and AVL-tree as examples of balanced trees 
without any modification in the number of node accesses of 
their original versions. The implementation results of B-tree 
version of the proposed algorithms showed superior results, 
especially in update performance, for example, the number of 
node accesses for the proposed B-tree versions is about one 
fourth of the results of PIBT. Also, the versions which do not 
use the B-tree structure showed good results compared to 
LPFST, especially in the search of IPv6 databases in which the 
number of node accesses became about one third. Also, since a 
scalar prefix tree is able to store up to w prefixes in two w-bit 
words, it has the potential to compress the tree with a high ratio.  

Appendix 

Lemma 5. In scalar prefix search, any time the search for an 
address d reaches a key k that its max-length prefix is a prefix 
of d or if p=MP(k) and p→d, then p will be the LMP(d); 
therefore, the search will be terminated. 

Proof. The proof is done using contradiction. Assume that 
MP(k)→d and the search is not terminated in the node 
containing k. If the search procedure finds another prefix p' and 
p'→d, p→p', then p' is a prefix whose existence is indicated in 
the match vector of a key k' and we have: MP(k)→MP(k') or 
p→k'. Based on the properties of section III, the max-length 
prefixes of all of the keys must be disjoint. Therefore, the 
above relations contradict this property, and the search 
procedure is terminated in the node containing k.           
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