
344 Mohammad Behdadfar et al. © 2011 ETRI Journal, Volume 33, Number 3, June 2011

In this paper, a model is introduced named double relation
chains (DRC) based on ordered sets. It is proved that using
DRC and special relationships among the members of an
alphabet, vectors of this alphabet can be stored and searched
in a tree. This idea is general; however, one special
application of DRC is the longest prefix matching (LPM)
problem in an IP network. Applying the idea of DRC to the
LPM problem makes the prefixes comparable like numbers
using a pair of w-bit vectors to store at least one and at most
w prefixes, where w is the IP address length. This leads to
good compression performance. Based on this, two recently
introduced structures called coded prefix trees and scalar
prefix trees are shown to be specific applications of DRC.
They are implementable on balanced trees which cause the
node access complexity for prefix search and update
procedures to be O(log n) where n is the number of prefixes.
As another advantage, the number of node accesses for these
procedures does not depend on w. Additionally, they need
fewer number of node accesses compared to recent
range-based solutions. These structures are applicable on
both IPv4 and IPv6, and can be implemented in software or
hardware.

Keywords: Totally ordered set, prefix, LPM, LMP, DRC,
coded prefix, scalar prefix.

Manuscript received June 30, 2010; revised Jan. 4, 2011; accepted Jan. 19, 2011.
This work was supported by Iran Telecom Research Center (ITRC).
Mohammad Behdadfar (phone: +98 913 317 8691, email: behdadfar@ec.iut.ac.ir) is with

the Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, Iran, and
also with the Broadcast Engineering Department, IRIB University, Iran.

Hossein Saidi (email: hsaidi@cc.iut.ac.ir) and Massoud Reza Hashemi (email:
hashemim@cc.iut.ac.ir) are with the Electrical and Computer Engineering, Isfahan University
of Technology, Isfahan, Iran.

Ying-Dar Lin (email: ydlin@cs.nctu.edu.tw) is with the Department of Computer Science,
National Chiao Tung University, Hsinchu, Taiwan.

doi:10.4218/etrij.11.0110.0381

I. Introduction

Longest prefix matching (LPM) is the problem of finding the
longest prefix of a w-bit address d among a set of binary
prefixes with the maximum length of w bits stored in a router’s
routing table. A straightforward algorithm to find the longest
matching prefix (LMP) of a given address is a linear search [1].
If n is the number of the prefixes, the complexity of this
algorithm will be O(n), which is not acceptable for large
databases. Using a radix tree or Trie [1] in which each tree edge
corresponds to one bit, the search and update complexities
become O(w), where w is 32 for IPv4 and 128 for IPv6. This is
better than a linear search, but the search and update
complexities of Trie are not acceptable for high-speed switches.
Some other versions of Trie, such as PATRICIA [2], level
compressed Trie (LC-Trie) [3], prefix expansion [4], and
longest prefix first search table (LPFST) [5]-[7] have also been
introduced. However, some of them suffer from similar
drawbacks in that they do not support incremental updates, and
others are not extendable to IPv6.

In later research, some range-based algorithms were
introduced which define two end points for each prefix and
store these end points in a tree [8]. By defining a range for each
prefix, the search in the tree is carried out to find the most
specific range corresponding to an address [8]. The node access
complexity of the search procedure in this structure is
independent from w. Range-based prefix search algorithms
need a long time for prefix updates, even for those algorithms
which use balanced trees to store the prefix end-points [9]. To
support fast search and incremental updates, some range-based
algorithms were introduced by the authors of [10] among
which prefixes in B-tree (PIBT) has the best search
performance [10]. Since, PIBT stores the prefix end-points in a

Coded and Scalar Prefix Trees: Prefix Matching
Using the Novel Idea of Double Relation Chains

 Mohammad Behdadfar, Hossein Saidi, Massoud Reza Hashemi, and Ying-Dar Lin

ETRI Journal, Volume 33, Number 3, June 2011 Mohammad Behdadfar et al. 345

B-tree, its search and update complexities are O(log n). It
should be mentioned that PIBT uses about 6 w-bit vectors
excluding the tree child pointers for each prefix. One of the
recent range-based lookup algorithms with comparable
average results to PIBT is balance tree with LPFST (BTLPT)
[11]. This algorithm uses two structures: a B-tree and another
LPFST. However, the complexity of BTLPT still depends on w
because of its Trie-based part, LPFST.

Prefix trees and M-way prefix trees [12] are other algorithms
which use a new comparison rule for storing and searching the
prefixes resulting in a tree with the worst case tree height of
O(w) and long update procedures.

We introduced new algorithms called coded prefix B-tree
[13] and scalar prefix trees [14] and later, a complete version of
[14] with more details and simulation results [15]. These
schemes consider a coding concept for prefixes to make them
comparable to numbers with =, <, and > and to store them in
tree structures and particularly in balanced trees like B-tree.
Also, we proved that the proposed algorithms do not modify
the number of node accesses of the original search and update
procedures of the trees. This makes the number of node
accesses of the search and update procedures independent from
the IP address length and leads to O(log n) tree operations
which will be efficient for both software and hardware
implementations. Lim and others demonstrated a similar search
procedure to [13], [14] which also uses a balanced tree [16].
However, the main advantage of our algorithm is the ability of
simple incremental updates with limited worst case time
compared to the hard and unpredictable time of updates in [16].
Also, in the proposed data structure of scalar prefix trees,
unlike the method of [16], each prefix exists only in one place
of the tree. This makes the insertions and deletions easier.
Another advantage of the proposed data structures compared to
[16] is that they can be applied on many types of trees,
especially balanced trees like B-tree, RB-tree, and AVL-tree,
without affecting the O(log n) order of number of tree node
accesses in prefix insertion and deletion procedures.

This paper introduces a mathematical model for the main
idea of [13]-[15] using the concept of totally ordered sets [17]
and extends it to a wide range of search trees. In this regard, the
novel concept of double relation chains (DRC) is proposed to
be used for modeling the scheme. The result can be extended to
all versions of the algorithm which use B-tree, RB-tree, and
AVL-tree. Finally, the results are compared with some
competitive algorithms like PIBT, BTLPT, and LPFST for
both IP versions 4 and 6.

The structure of the paper is as follows. The idea of DRC
and its properties are introduced in section II. Also, it is shown
that the LPM problem is a special application of DRC. Section
III proposes coded prefix and scalar prefix tree structures

derived from the concept of DRC. Comparison results and the
conclusion are presented in sections IV and V, respectively.

II. Introduction of DRC Using the Concept of Totally
Ordered Sets

Before introducing DRC, we define a prefix comparison rule.
First, consider the following inequality in which β is the
representative of blank space: 0β ≤ ≤ 1.

Using this inequality, variable length prefixes can be
compared. For example, consider the following prefixes:
p1=010000*, p2=0100011, p3=01000*, p4=0100*, p5=010*,
and p6=00*.

Using the mentioned inequality, these prefixes can be sorted
in the following order: p6 ≤ p5 ≤ p4 ≤ p3 ≤ p1 ≤ p2.

Therefore, they can be stored in any search tree. To explain
our idea, we consider the binary search tree (BST). Assume
that the above prefixes should be inserted into a BST with this
order: p1, p2, p3, p4, p5, p6.

Figure 1(a) shows the result of the insertion process. Since
the prefixes can be stored in a search tree, it is enough to run
the tree search algorithm to find a specific prefix. However,
there is an issue as to whether the structure is capable of
searching the LMP of an address.

To resolve this concern, consider the incoming address
d=0100010. Searching d in the tree of Fig. 1(a) traverses nodes
A and C. Obviously, none of the prefixes stored in these two
nodes is the prefix of d. Therefore, the ordinary search
algorithm cannot find the LMP of an address. All of the
prefixes of d, 010*, 0100*, and 01000*, are located in the left
subtree of node A, but the search algorithm traverses the right
subtree. However, an interesting hidden property exists in this
tree which makes it capable of finding the LMP by storing
additional information in each node. This property is as follows.

Node A which contains p1 is the separation point of the

Fig. 1. (a) Example of inserting prefixes in a BST using proposed
comparison rule and (b) CP-BST.

01
0*

010000*
{01000*,
0100*,
010*}

p2
0100011

p4
0100*

p5
010*

Search path of
d=0100010

A

B C

D

E

F

p3, p4, and p5 are
hidden

information of
this node.

p1

0011110
0100000

A

0000100
0100000

B

0000001
0100011

C

0001000
0100000

0010000
0100000

D

0100000
0000000

F

Search
path of

d=0100010

Results of
node A:

(a) (b)

Match vector
Key

p3
01000*

p6
00*

01
00

*
01

00
0*

E

346 Mohammad Behdadfar et al. ETRI Journal, Volume 33, Number 3, June 2011

search path of d and the search path of some of the prefixes of
d. However, each of these prefixes (p3, p4, and p5) is a prefix of
p1, which is stored in node A.

In this paper, we will prove that each prefix of d which is
missing in the search path will also be a prefix of at least one
key in the search path of d. One of these keys is the one which
is stored in the separation point. Therefore, this key contains
some additional hidden information about all of the missed
prefixes of d. This information makes the search procedure
capable of finding all of the prefixes of d in the tree. Using this
proof, the coded prefix trees and scalar prefix trees will be
introduced. The proof is done using a novel concept named
DRC. As it will be discussed, the prefixes will be modeled as
vectors of the alphabet of 0, 1, and β.

Before introducing coded prefixes and scalar prefixes, some
properties will be introduced using the concept of totally
ordered sets [17]. Consider a set P such that

P={p1, p2, p3,...,pn}. (1)
Assume that P is totally ordered under the relation Rt. Also,

assume that a partial order [17] relation Rp over P exists which
has the following relation with Rt (a and b are members of P):

aRpb ⇒ aRtb. (2)

Also, assume that the set P is the union of k subsets in
equality (3) with the condition (4):

1 ,i k
i iP P=
== ∪ (3)

, , ; .i jP P i j i j= ∅ ∀ ≠∩ (4)

Also, consider the number of members of Pi, namely, n(Pi)
with the following property:

n(Pi) ≤ w; 1 ≤ i ≤ k. (5)
Finally, assume that each Pi is a totally ordered set (chain)

[17] under the relation Rp. This also implies that each member
of P has the relation Rp with itself. Note that the subsets Pi
which meet (3), (4), and (5) are not unique. Using (1) and (2), a
simple property can be retrieved, and since we use it in our
next sections, we state it as a lemma. Also, note that (3), (4),
and (5) will be used in section IV.

Lemma 1. Consider the definitions of P, Rt, and Rp which
were stated above and a, b, and c as members of P. Assume
that aRtb and bRtc. Also assume that aRpc. Using these
assumptions, the conclusion aRpb will not always be true.

Proof. This is proved using a contradictory example. Assume
that Rt is the relation ≤ and Rp is the relation |, that is, the
relation of counting, for example, 2|8 means that 2 counts 8.
Consider N as the reference set. These relations (≤ and |) meet
(2). Therefore, the required condition for Rt and Rp is met. As a
contradictory example, assume that a=2, b=3, and c=4. In this
case, 2|4, that is, 4 mod 2 = 0. However, 2|3 is false. □

In this stage, we need to define DRC.

Fig. 2. Condition of DRC.

Rt
a b c

Rp

a b c
Rp

Rp

Rt

Fig. 3. Illustration of property 1.

Rt

X Y TRp

X Y T

Rp

Rp
Rp

Rp

Rt Rt

Fig. 4. Illustration of property 2.

t pn x
Rp

Set of the members x of P with the
property of tRpx

All members of the chain which are
ordered by relation Rt

p1

Definition 1. Consider the set P in (1). Assume that P is a
chain under the relation Rt and (2) holds for relations Rt and Rp.
Assume that (3), (4), and (5) hold for Rp. We call (P, Rt, Rp) (the
set P under relations Rt and Rp) a DRC if the following
condition is met for , , :a b c P∀ ∈

(aRt b, bRtc, aRpc) ⇒ aRpb . (6)
Figure 2 illustrates (6). The relations are shown on a line and

a, b, and c are some members of the chain constructed by
(P, Rt). Also, a, b, and c are not required to be consecutive
members. Therefore, any numbers of members are allowed to
be between them.

1. Properties of DRCs

Based on the definition of DRC, the first property is trivial.
Property 1. Consider the set P and the relations Rt and Rp in

a DRC as defined in definition 1. If the following conditions
are met:

• x, y∈P, xRpy
• There are other m members of P between x and y in the

chain constructed by P and the relation Rt. Then, x will
have the relation Rp with all of the other m members.

Figure 3 is an illustration of property 1. The following
property is also a result of property 1.

ETRI Journal, Volume 33, Number 3, June 2011 Mohammad Behdadfar et al. 347

Property 2. Consider set P and the relations Rt and Rp in a
DRC. Also, consider that all members of P which are totally
ordered under the relation Rt are shown on a line, similar to a
Hasse [17] diagram. Then, consider an arbitrary member t from
the members of P. Using the result of property 1, it can be
proved that all members, for example, x with the property of
tRpx, are consecutive to each other on a segment of the line (Fig.
4). The proof of this property is trivial.

Now, consider set A with N+1 members:
A={α0, α1, α2, ..., αN}. (7)

Assume that α0=β, and A is a totally ordered set under a
relation shown by ≺ and with the order of (7). The ordered
vector V is defined as

1 2(, ,...,), , .w iV v v v i v A= ∀ ∈ (8)

Consider two vectors V and V' using the definition of (8).
The relation Rt is defined recursively as

1 1

1 1 2 2

(() or
(() and (,...,) (,...,))).

t

w t w

V R V v v
v v v v R v v

′ ′⇔
′ ′ ′=

<
 (9)

Also, the relation Rp is defined as

, (() or ()).p i i iV R V i v v v β′ ′⇔ ∀ = = (10)

In this case, it can be verified easily that Rt and Rp have the
following relation which is exactly the same as (2).

 .p tV R V V R V′ ⇒ (11)

Now, consider a set P which is defined as

1 2{ (, ,...,), , }.w iP V V v v v i v A= = ∀ ∈ (12)

It can be easily verified that both (P, Rt, Rp) and (P', Rt, Rp)
are DRC where P' is an arbitrary subset of P (this can be
proved by considering the definition of DRC). Since P' is
totally ordered under the relation Rt, any input vector can be
searched inside it using ordinary search schemes. Now,
consider vector d such that d= (d1, d2, d3, ..., dw), ∀i; di∈A.

Since the set P and every subset P' of P are totally ordered
sets under the relation Rt, adding d to the set P' will not modify
this property. Therefore, d has a fixed place on the line of
members of P' (Fig. 5). Now, if we assume that d is inserted in
the line as it is shown in Fig. 5, and if we define the set M as

M ={pi∈P' ; piRpd}, (13)
then, it can be proved easily that M is a partially ordered set
[17] (POSET) under the relation Rp. The minimal and maximal
members of M might be indicated as pm and pM. Bearing in
mind that d is not really inserted in this line, Fig. 5 shows its
location virtually. Based on Fig. 5, assuming pj is the
immediate member before d, then

pM Rp d, pM Rt pj, pj Rt d. (14)
Based on property 2 and (14), it can be verified that for every

Fig. 5. Virtual insertion of vector on line.

pnd PM
p1 Pj Pj+1 Pm

Rp Rp

pi (including pj) between pM and d on the line of Fig. 5, the
following relation exists:

pMRppi. (15)

2. Main Objective

In the following sections, it will be proved that to propose an
LPM algorithm based on the above considerations, it is
necessary to find PM, the maximal member of the set M
defined in (13), for a given d. First, we assume that we need to
find the location of d on the line.

Lemma 2. To find the location of d on the line, using any
search algorithm, if the search algorithm starts from any point
on the line of Fig. 5 between p1 and pn, at least one pi will be
encountered that meets the conditions piRtd and pMRppi .

Proof. To find the location of d on the line, the search should
finally meet both pj and pj+1 which would be the immediate
neighbors of d if it was inserted on the line. Since based on (15)
pMRppj, at least one member, pj, with the mentioned property
will be seen in the search procedure. □

Based on the result of lemma 2, at least one pi meeting the
condition pMRppi will be encountered in the search procedure.
Since pMRppi, if some additional information could be stored
with pi, indicating the existence of members such as pk with the
property pkRppi, then it would not be necessary to find pM itself.
It would be sufficient to extract the additional information of
the first pi, seen in the search path with the property of pMRppi.

Since the vectors are related to each other by the relation Rt,
it is possible to store the vectors in a tree-based structure to
decrease the search time. To show how to store the vectors,
consider subset P' of set P as it was described in section II.1.
Since P' is totally ordered under relation Rt, Rt can be modeled
by the relation ≤ for a set of numbers, for example, the set of
natural numbers N or one of its subsets. Therefore, the
members of P' can be stored in a tree structure. However, it
should be ensured that searching on the tree does not miss the
vectors pi with the property of piRpd. This directly depends on
the insertion algorithm of the vectors with additional
information and the following lemma.

Lemma 3. Consider a DRC (P', Rt, Rp). Assume that the
members of P' are inserted into a binary search tree with an
arbitrary order. Consider d as an input vector and assume that
the objective is to search d in the tree. If pi is a member of P'
stored in the tree and also piRpd, then at least one vector q will

348 Mohammad Behdadfar et al. ETRI Journal, Volume 33, Number 3, June 2011

Fig. 6. Proof of lemma 3.

r

q
Search path of d

r’s children

pi

be found in the search path of d with the property of piRpq.

Proof. If pi is in the search path of d, the lemma is proved.
Assume that the search path of pi is separated from the search
path of d in a node containing a vector, for example, q. Also,
the following relationships can be verified from Fig. 6 and the
assumptions of the lemma: piRtq, qRtd, piRpd. Based on
property 1 and the DRC (P', Rt, Rp), we can conclude piRpq.
Therefore, in the search path of d, at least one vector q will be
found for which we have piRpq. □

Therefore, to find the maximal member of M in (13), it is
required to store additional information with each stored vector.
The following example clarifies the problem.

Example 1. Consider an input vector d and the set of stored
vectors P={p1, p2, p3, p4, p5, p6}. Also, consider the following
relations between the members of P: (a1) p6 Rt p5 Rt p4 Rt p3 Rt p1 Rt p2
and (a2) p5Rpp4Rpp3Rp p1.

Assume that the vectors will be inserted into the tree with the
following order: (a3) p1, p2, p3, p4, p5, p6.

Finally, assume that the objective is to find the maximal
member of the set M defined in (13) under the relation Rp using
the following additional considerations for d: (a4) p1Rtd, p3Rpd
based on (a2) and (a4), in this example M={p3, p4, p5}.

To solve the problem, the binary search tree of Fig. 7 is
constructed based on the order of (a3). The search path of d is
shown in the same figure based on (a1), (a2), (a3), and (a4).
Clearly, the maximal member of M is p3, which is not in the
search path. However, p1 exists on the search path of d and
based on (a2), p3Rpp1. Also, based on (a2) and according to the
transitivity property of POSETs [17] under the relation Rp, we
can say p3Rpp1, p4Rpp1 and p5Rpp1.

Therefore, the set of the vectors pi with the property of
piRpp1 which also meet piRpd will be N={p3, p4, p5}. Based on
(a4) and considering N, we can conclude that N is a subset of
M (in this example, N=M). If the vectors pi with the property
of piRpp1 could be stored with p1 as some additional
information (Fig. 7), then none of the members of M would
be missed in the search path of d. Finally, the answer to the
problem, p3, which is the maximal member of M, will be
found in the root node of the tree. This result is the same as
the result we saw in the similar example of prefixes of
Fig. 1(a). As it will be clarified in the following section, LPM

Fig. 7. Vectors inserted in tree structure.

p1
{p3, p4, p5}

p2,
{…}

p3,
{…}

p4,
{…}

p5,
{…}

Search path
of d

p6,
{…}

is a special application of DRC.

A. LPM: Special Application of DRC

In this stage, we will focus on a special application of DRC
to the LPM problem. Consider set A as a special case of (7):

 A = {β, 0, 1}, (16)
where β is the blank space.

Also, consider P, a special case of (12) and its subset P':

1 2{ (, ,...,), , },w iP V V v v v i v A= = ∀ ∈ (17)

{ , ((), (, ,))}.j kP V V P v k j k w vβ β′ = = = ⇒ ∀ < ≤ = (18)

From the definition of P', we will show that it is a set of
binary prefixes of different lengths. Also, according to the
relation ≺ which is defined for (7), the same relation would be
true for (16). Therefore, it can be concluded that

 β ≺ 0 ≺ 1. (19)
Now, based on (9) and (19), it can be simply verified that the

relation Rt is the comparison of w-bit strings with the alphabet
of (16). Also, based on (10), (16), and (18), VRpV' means that V
is a prefix of V'. Based on these discussions, a novel LPM
algorithm will be introduced and its performance will be
evaluated in the following sections.

III. Coded and Scalar Prefix Search: Applications of
DRCs

In the previous section, we showed that using the alphabet of
(16), the set P' in (18), and also the relations Rt in (9) and Rp in
(10), (P', Rt, Rp) will be a DRC describing the prefixes with
different lengths and their relations. For this application, we use
some new notations for Rt and Rp as follows: The symbol ≤
will be used for relation Rt. The symbol → will be used for
relation Rp. As an example, consider w=5. To represent a
member of P', such as V= (v1, v2, v3, v4, v5) = (0, 0, 1, β, β), we
can show it with 001ββ and simplify it by replacing the ββ at
the end with * to show this vector with 001*. Now, let us
clarify the concept with the following examples.

Example 2. Consider P' as the set of the following prefix

ETRI Journal, Volume 33, Number 3, June 2011 Mohammad Behdadfar et al. 349

Fig. 8. Example of property 2 for prefix vectors.

Set of prefixes
e.g. p that 0*→p

Set of prefixes
e.g. p that 01*→ p

Set of prefixes
e.g. p that 1*→ p

0* 01* 010* 011* 1* 10* 110*

vectors: P' ={0*, 01*, 011*, 010*, 10*, 110*, 1*}.

Since (P', Rt) (that is, (P', ≤)) is a totally ordered set, we can
write the members of P' ordered: 0* ≤ 01* ≤ 010* ≤ 011* ≤ 1*
≤ 10* ≤ 110*.

As examples of members related by Rp, we can say 0*→01*,
01*→011*,.…

Now, to check the correctness of property 2 for this DRC,
assume that the ordered prefixes are shown on an ordered line
(Fig. 8). Based on this figure, all the prefixes p such that 0*Rpp
(0*→p) are adjacent to each other on this line. Looking at the
continuous bolded lines in Fig. 8, this fact also holds for 01*
(01*→01*, 01*→010*, 01*→011*), 1* (1*→1*, 1*→10*,
1*→110*). This example completely matches with property 2.

Example 3. Mapping example 1 to this DRC, consider that
(i) w=7 and d=0100010 and (ii) p1=010000*, p2=0100011,
p3=01000*, p4=0100*, p5=010*, and p6=00*.

Also, let us assume that the objective is to find LMP(d) in the
above set of prefixes. Checking this set, it is clear that LMP(d)
is p3. However, we try to find this answer using example 1.
Finding the LMP(d) from the set of prefixes is equivalent to
finding the maximal member of the set M in example 1.
Therefore, the search process will be the same as example 1.
Also, it is required to store the information of all prefixes of p1
in the root node. Therefore, the information about the existence
of the following set of prefixes should also be stored in the root
node: {p3, p4, p5}={01000*, 0100*, 010*}.

Replacing all pi stored in the tree of Fig. 7 by the prefixes of
this example and comparing d with the root node prefix
010000* results in searching its right hand child. This is the
same as Fig. 1(a). While LMP(d)=p3 is missed from the search
path, this problem is solved by the additional information
stored in the root of the tree which indicates the existence of p3
as well. It means that storing the additional information in each
node causes the search to find the correct answer in a single
downward pass. For example, the additional information
which is stored in node A of Fig. 1(a) is p3, p4, and p5. The
existence of these prefixes can also be indicated using a w-bit
match vector to reduce the memory size. The resulting tree is
called a coded prefix tree. In order to manage the available
space, the details of insert, search, and delete functions of
coded prefix trees are omitted. Instead, we focus on its

improved version, scalar prefix tree, which will be explained in
next subsections. However, it is worth mentioning that coded
prefix trees are implementable on many types of tree structures,
especially on balanced trees. We have implemented the scheme
on B-tree (coded prefix B-tree: CP-BT), RB-tree (coded prefix
RB-tree: CP-RB), and AVL-tree (coded prefix AVL-tree: CP-
AVL) without any changes in the number of node accesses for
ordinary search and update functions of the trees. The details of
tree operations in CP-BT are discussed in [13].

1. Scalar Prefix Trees

Figure 1(a) shows the coded prefix tree. Although p3, p4, and
p5 are prefixes of d, the search function of d does not traverse
nodes B, D, and E, which are the representatives of p3, p4, and
p5, respectively. However, the existence of these prefixes is also
indicated in node A, which is located in the search path.
Therefore, it suffices to store the existence of such prefixes in
node A only, and nodes B, D, and E can be removed from the
tree. This causes the tree to become more compressed and
faster in search and update procedures. Although the
algorithm and its structure were given by an example, we have
proven its correctness in [14]. This new kind of storing of
prefixes is the basis of scalar prefix trees. To introduce scalar
prefix trees, first, let us define some notations:

• len(p) shows the length of a prefix p.
• p(i) shows the i-th bit of prefix p.
• For each prefix p with len(p)=k and k<w, we add w-k zero

padding and we call it key and show it as key(p) or keyp

which will be inserted into the tree instead of the original
prefix: key(p)=p(0)p(1)p(2)…p(k–1)000…0. For example,
if w=4 and p=101*, then: key(p)=1010.

• The notation p → q shows that p is a prefix of q.
• The notation p! → q indicates that p is not a prefix of q.
• If p! → q and q! → p, then p and q are called disjoint

prefixes.
• A prefix of p with the length of k is shown by prefk(p).
• For a key r, a w-bit match vector is defined and abbreviated

with r.mv for both coded prefix and scalar prefix trees. This
vector stores the additional information of each prefix
which was mentioned above. The i-th bit of r.mv is called
r.mv(i). If r.mv(i)=1, it means that there exists a prefix q of r
with the length of i+1, len(q)=i+1, or q=prefi+1(r) in the
database. Please note that indexing the match vector bit
numbers starts from 0. For an example of the match vector,
consider the set of prefixes in the root node of Fig. 1(a). The
pair (match vector, key) of this node can be stored like its
corresponding node in Fig. 1(b): (0011110, 0100000). In
mv=0011110, mv(2)=1 is a representative for p5=010* and
mv(3)=1 is a representative for p3=01000*.

350 Mohammad Behdadfar et al. ETRI Journal, Volume 33, Number 3, June 2011

• The longest prefix of each key indicated by its match vector
is called the max-length prefix of that key and is shown by
MP(key). The largest i such that key.mv(i)=1 shows that the
length of MP(key) is i+1. Again consider (match vector,
key) the pair of the root node of Fig. 1(b) as mentioned
above. mv(5)=1 is a representative for p1=010000* as the
max-length prefix of 0100000.

• The length of the path from the root of the tree to a node x
is called height(x). For example, height(root) is zero, and
the height of each child of the root is one and so on.

Consider Fig. 6 and the proof of lemma 3. Assume that the
prefixes of the set P' are inserted into a binary search tree with an
arbitrary order. Consider d as an input IP address and assume that
the objective is to search LMP(d) in the tree. If pi is a member of
P' stored in the tree and pi→d, based on the proof of lemma 3
and Fig. 6, if the search path of pi is separated from the search
path of d in a node containing a vector, for example, q, the
relation pi→q will always be true. Based on this property, we
introduced coded prefix trees at the start of section III. Since the
existence of pi is indicated by both match vectors of pi and q,
key(pi), whose max-length prefix is pi and is located in the left
subtree of q as it is also depicted in Fig. 6, can be removed from
the tree, because its information is redundant compared to q.

Scalar prefix trees are introduced based on the idea of
removing all such redundancies and compressing the coded
prefix trees as much as possible. Removing these redundancies
causes the prefixes of each node to become completely
different from the other nodes, that is, each node’s key and its
match vector are representatives of a set of prefixes that do not
exist in any other node.

Considering P as the set of all prefixes and Pi as the set of
prefixes of keyi stored in the tree based on its match vector, the
following union will be true. This means that each key and its
match vector correspond to one set Pi. Note that

1 .i k
i iP P=
== ∪ (20)

Since the prefixes which are stored in the match vector of
each key do not exist in the match vector of any other key, it
will be concluded that

, , ; .i jP P i j i j= ∅ ∀ ≠∩ (21)

Also, each Pi contains at most w prefixes. It results in
n(Pi) ≤ w. (22)

Considering (20), (21), and (22), it can be easily verified that
these equations are the same as (3), (4), and (5) in section II
with the same meanings.

The idea of scalar prefix trees is also applicable to many
types of trees including balanced trees such as B-tree, RB-tree,
and AVL-tree by some modifications in their search and update

procedures. However, to simply describe the main idea, we
explain its application to a binary search tree and call it scalar
prefix binary search tree (SP-BST). For the details of its
application to the two versions of B-tree (SP-BT and SP-BTe),
RB-tree (SP-RB), and AVL-tree (SP-AVL), and also the major
modifications in the search and update procedures of these
trees, refer to [14].

A. Insert Procedure for SP-BST

The insertion procedure for SP-BST is explained in [14] and
[15] in detail. What follows is a brief review.

Insertion of each prefix in the tree is similar to the insertion
procedure in a binary search tree. However, during the
insertion of each prefix p, one of the following cases may occur
in each node r of the insertion path which contains a key keyr:

If p→MP(keyr), then keyr.mv(len(p)–1)= 1.
Else if MP(keyr) → p, then:

 keyr.mv(len(p)–1)=1 and keyr = key(p).
 Else

The algorithm is repeated till it is terminated or reaches
a leaf node.

Further details of the insertion algorithm are in [14] and [15].
For an example of the insertion process, consider the prefixes

of example 3 with the same order of arrivals. Figure 9 shows
the tree after the insertion of the above prefixes. Comparing Fig.
9 with Fig. 7 (or Fig. 1(b)), the SP-BST of the above prefixes
shows a good compression ratio and also a shorter tree height
compared to coded prefix trees.

Details of the prefix deletion procedure for SP-BST can be
found in [14] and [15].

B. Search Procedure for SP-BST

The search procedure for the LMP(d) is started from the root
and may be finished in a leaf or non-leaf node. First, consider a
w-bit match vector for d, called d.mv and assume that the
search is being done in a node r containing a key named keyr.

Although the search procedure is explained in [15], it is
summarized here by a simplified pseudocode.

If MP(keyr) → d, then: LMP(d)=MP(keyr).
Else if some other prefixes of keyr match with d, the

corresponding bits in d.mv will be set to one.
Then, the procedure goes to right or left child of the
current node, based on the result of comparing d
and keyr.

For example, assume that the objective is to find LMP(d) in
Fig. 9 considering d=0100010. The search starts from the root
node in which Keyr=0100000 is stored and MP(Keyr)! → d.
However, since some other prefixes of Keyr match with d, their
corresponding bits in d.mv will be set to one. Therefore,

ETRI Journal, Volume 33, Number 3, June 2011 Mohammad Behdadfar et al. 351

Fig. 9. SP-BST for prefixes of example 3.

0011110,
0100000

A

0100100,
0000000

B

010*
0100*

01000*

Match
vector

Key

010000*

00*

0000001,
0100011

0100011
C

d.mv=0011100. Then, since d > Keyr, the right child should be
checked. It does not contain any new matching prefix of d. The
procedure terminates after checking the match vector and key
in node C and LMP(d)=01000* which corresponds to the least
significant one in d.mv.

As another example, consider d=0100001. Checking the root
node, MP(Keyr)→d (010000*→0100001). This guarantees
that LMP(d)=MP(Keyr)=p1=010000*. In this case, it is not
needed to continue traversing the tree.

C. Properties of Scalar Prefix Trees

Based on the search and insert procedures, SP-BST has
some properties listed below. The proofs of parts (i), (iv), and
(v) are omitted because of space limitations.

(i) Lemma 4. The max-length prefixes of all node keys in
the tree are disjoint.

For example, in Fig. 9, the disjoint max-length prefixes
of the nodes are 010000*, 0100011, and 00*.

(ii) Lemma 5. In a scalar prefix search, any time the search
for address d reaches a key k whose max-length prefix is
a prefix of d or if p=MP(k) and p→d, then p will be the
LMP(d) and therefore the search will be terminated. The
proof is explained in the appendix.

(iii) A prefix is stored in the match vector of only one key in the
tree. This is the direct result of the insertion algorithms and
the relations (20), (21), and (22) (or (3), (4), and (5) of
section II).

(iv) Lemma 6. To store a new prefix p in SP-BST, let us
assume that K= {k1, k2, k3,. . . , kn} is the set of all keys in
the tree which p is a prefix of them. If among the
members of K, kj∈K is the key with the least height node,
then the prefix p will be stored only in the match vector
of kj and kj.mv(len(p)–1) will be set to one.

(v) Lemma 7. Again assume that K= {k1, k2, k3,. . . , kn} is the
set of all keys stored in the tree in which p is a prefix of
them, and among its members, kj is the key whose node

has the least height. Then, for any arbitrary address d
such that p→d, the search path of d will cover the node
containing kj.

(vi) Consider the same definitions for prefix p, the set K and
the key kj in properties (iv) and (v). Also, consider an
address d such that p→d. Based on lemma 6, kj is the
first member of K which is seen in the insertion path of p.
Also, based on the lemma 7, it is the first member of K
which is seen in the search path of d. Therefore, in order
to store p in the tree, its existence should be indicated in
the match vector of kj. On the other hand, the search
procedure of d will reach kj in the search path before any
other member of K and kj.mv(len(p)–1) will indicate if p
is stored in the tree or not. This means that kj and its
match vector have all the information about p and make
these procedures independent of the other members of K
and their match vectors. Therefore, with respect to p, we
call kj the master key for all of the other members of K
located in its subtrees. Also, the other members of K in
the subtrees of kj are called the slave keys. The reason for
this naming is that with respect to p, kj and its submatch
vector overrule all of the information stored in its
subtrees.

Based on the above properties, up to w prefixes can be stored
in a key. Therefore, if np is the number of prefixes and nk is the
number of the node keys in the tree, then it is always true that
nk ≤ np. The equality holds only when all of the prefixes are
disjoint. This causes the tree to become more compressed if the
percentage of non-disjoint prefixes increases. The reason is that
disjoint prefixes will be stored in the tree as the main prefix of a
single key. If the percentage of non-disjoint prefixes increases,
most of the prefixes will be stored in the match vectors of the
disjoint prefixes. Therefore, they do not need additional storage.
This can make the tree compressed. Current IPv4 prefix
databases contain less than 10% of non-disjoint prefixes.

The SP-BST has many advantages compared to Trie-based
and range-based algorithms. A key of SP-BST may contain up
to w prefixes. Therefore, the average height of the tree is
reduced. On the other hand, since all of these prefixes are
stored in the match vector of one key and also this tree does not
need to store both of the end points, the average storage would
be reduced as well.

Since there is no guarantee for SP-BST height, the concept
of scalar prefix search has been applied to some balanced trees,
such as B-tree (SP-BT), RB-tree (SP-RB), and AVL-tree (SP-
AVL), without any changes in their original number of node
accesses in the search and update procedures. They have the
ability to guarantee and control the worst case height of the tree
to be O(log n). Therefore, the search and update complexities

352 Mohammad Behdadfar et al. ETRI Journal, Volume 33, Number 3, June 2011

for these trees are O(log n) as well. We have explained the
details of the search and update procedures of SP-BT in [14].

IV. Comparison Results

Different versions of the proposed algorithms were
implemented for IPv4 and IPv6 databases in software, and their
results were presented in [14] and [15]. In this paper, some
complementary results are included based on comparing the
proposed B-tree schemes with competing solutions like PIBT
and BTLPT.

Three IPv4 and two IPv6 databases of different sizes are
used for the simulations. The IPv4 prefix databases are AS4637
(139519 prefixes, August 2008), AS1221 (191566 prefixes,
August 2008), and AS131072 (313453 prefixes, January 2010)
which were downloaded from [18]. The IPv6 prefix databases
[18] are AS1221 (933 prefixes, August 2008) and AS131072
(2523 prefixes, January 2010).

In [15], the search and update results were presented in terms
of the average number of node accesses to ensure that the
results are independent from the CPU model, cache size, or
other restricting issues and also to give a proper indication of
the hardware implementation efficiency.

In this paper, the results are presented in terms of the worst
case prefix search and update results of the proposed B-tree

Fig. 10. Worst case node accesses results of search procedures for
B-tree schemes (IPv4 and IPv6 databases).

AS4637
135919 prefixes

AS1221
191566 prefixes

AS131072
313453 prefixes

35

30

25

20

15

10

5

0W
or

st
 c

as
e

nu
m

be
r o

f n
od

e
ac

ce
ss

es
 SPBT CPBT BTLPT PIBT

AS1221
933 prefixes

AS131072
2523 prefixes

35

30

25

20

15

10

5

0W
or

st
 c

as
e

nu
m

be
r o

f n
od

e
ac

ce
ss

es

(b) IPv6 search results

SPBTCPBT BTLPTPIBT

(a) IPv4 search results

schemes in comparison with PIBT and BTLPT. The results are
obtained by repeating the test scenarios several times using
random ordering for the members of the databases. Also, since
the storage requirements are similar to the results of [15], they
are not included in this paper.

To find the storage requirements, initially, all of the prefixes
of each database were inserted. Then, to find the number of
node accesses for each of the insertion and deletion procedures,
each prefix was deleted and inserted again. For each time of
doing the insertion or deletion procedure, its number of node
accesses was recorded and the worst case numbers of node
accesses for the insertion and deletion were finally extracted.

Although the results would not be different in the general
case for different branching factors of the B-tree, the minimum
degree of the B-tree is considered to be 14 in this paper for the
proposed algorithms, PIBT and BTLPT.

The worst case number of node accesses for the search
procedures of IPv4 and IPv6 databases are depicted in Fig. 10.
As shown in Figs. 10(a) and (b), the required number of node
accesses of the search procedure of SP-BT is the best for all
three databases. The CP-BT also has comparable results.

Note that unlike the presented average case performances of
these algorithms in [15], in the worst case, the search procedure
of BTLPT is degraded by a big factor due to its dependency on

Fig. 11. Worst case node accesses results of insertion procedures
for B-tree schemes (IPv4 and IPv6 databases).

AS4637
139519 prefixes

AS1221
191566 prefixes

AS131072
313453 prefixes

35

30

25

20

15

10

5

0W
or

st
 c

as
e

nu
m

be
r o

f n
od

e
ac

ce
ss

es

SPBT CPBT BTLPT PIBT

AS1221
933 prefixes

AS131072
2523 prefixes

35

30

25

20

15

10

5

0W
or

st
 c

as
e

nu
m

be
r o

f n
od

e
ac

ce
ss

es

(b) IPv6 insert results

SPBT CPBT BTLPTPIBT

(a) IPv4 insert results

40

ETRI Journal, Volume 33, Number 3, June 2011 Mohammad Behdadfar et al. 353

w

Fig. 12. Worst case node accesses results of deletion procedures
for B-tree schemes (IPv4 and IPv6 databases).

AS4637
139519 prefixes

AS1221
191566 prefixes

AS131072
313453 prefixes

90

80

70

60

40

30

10

0

W
or

st
 c

as
e

nu
m

be
r o

f n
od

e
ac

ce
ss

es

(a) IPv4 delete results

AS1221
933 prefixes

AS131072
2523 prefixes

W
or

st
 c

as
e

nu
m

be
r o

f n
od

e
ac

ce
ss

es

(b) IPv6 delete results

50

20

SPBT CPBT BTLPT PIBT

70

60

40

30

10

0

50

20

SPBT CPBT BTLPTPIBT

Trie-based search of its LPFST part. A similar situation exists
for the worst case insertion and deletion procedures of the
PIBT which is depicted in Fig. 11(a) and Fig. 12(a) for the IPv4
database and Fig. 11(b) and Fig. 12(b) for the IPv6 database.

Although the search performance of the proposed schemes is
very much similar to PIBT, their update performance is
superior compared to PIBT and BTLPT. However, BTLPT
requires the least storage as it was mentioned in [15]. Also note
that, although BTLPT has the worst performance in most cases
of Figs. 10, 11, and 12, it has a better average case update
performance than PIBT [15].

V. Conclusion

In this paper, the novel idea of DRC was presented. Using
this scheme, our recent work on the longest prefix matching
algorithms was completed and modeled. Based on this idea,
two sets of search trees named coded prefix and scalar prefix
trees were shown to be examples of DRC. This will allow the
treatment of prefixes as numbers and their storage in ordinary
trees, which is a new approach compared to range-based and
Trie-based solutions. This kind of treating prefixes makes the

trees capable of fast search and incremental updates while the
required storage has comparable results to other competitive
solutions. Coded and scalar searches were implemented on
B-tree, RB-tree, and AVL-tree as examples of balanced trees
without any modification in the number of node accesses of
their original versions. The implementation results of B-tree
version of the proposed algorithms showed superior results,
especially in update performance, for example, the number of
node accesses for the proposed B-tree versions is about one
fourth of the results of PIBT. Also, the versions which do not
use the B-tree structure showed good results compared to
LPFST, especially in the search of IPv6 databases in which the
number of node accesses became about one third. Also, since a
scalar prefix tree is able to store up to w prefixes in two w-bit
words, it has the potential to compress the tree with a high ratio.

Appendix

Lemma 5. In scalar prefix search, any time the search for an
address d reaches a key k that its max-length prefix is a prefix
of d or if p=MP(k) and p→d, then p will be the LMP(d);
therefore, the search will be terminated.

Proof. The proof is done using contradiction. Assume that
MP(k)→d and the search is not terminated in the node
containing k. If the search procedure finds another prefix p' and
p'→d, p→p', then p' is a prefix whose existence is indicated in
the match vector of a key k' and we have: MP(k)→MP(k') or
p→k'. Based on the properties of section III, the max-length
prefixes of all of the keys must be disjoint. Therefore, the
above relations contradict this property, and the search
procedure is terminated in the node containing k.

References

[1] T.H. Cormen, C.E. Leiserson, and R.L. Rivest, Introduction to
Algorithms, MIT Press, 1990.

[2] D.R. Morrison, “PATRICIA Practical Algorithm to Retrieve
Information Coded in Alphanumeric,” J. ACM, vol. 15, no. 14,
Oct. 1968, pp. 514-534.

[3] S. Nilson and G. Karlsson, “IP Address Lookup Using LC-Tries,”
IEEE JSAC, vol. 17, June 1999, pp. 1083-1092.

[4] V. Srinivasan and G. Varghese, “Fast Address Lookups Using
Controlled Prefix Expansion,” ACM Trans. Computer Syst., vol.
17, no. 1, Feb. 1999, pp. 1-40.

[5] L.C. Wuu, K.M. Chen, and T.J. Liu, “A Longest Prefix First
Search Tree for IP Lookup,” Proc. ICC, May 2005, pp. 989-993.

[6] P. Gupta, S. Lin, and N. McKeown, “Routing Lookups in
Hardware at Memory Access Speeds,” Proc. IEEE INFOCOM,
1998.

[7] W. Eatherton, G. Varghese, and Z. Dittia, “Tree

354 Mohammad Behdadfar et al. ETRI Journal, Volume 33, Number 3, June 2011

Bitmap: Hardware/Software IP Lookups with Incremental
Updates,” Proc. ACM SIGCOMM, 2004, pp. 97-122.

[8] B. Lampson, V. Srinivasan, and G. Varghese, “IP Lookups Using
Multiway and Multicolumn Search,” IEEE/ACM Trans.
Networking, vol. 7, no. 3, June. 1999, pp. 324-334.

[9] P.R. Warkhede, S. Suri, and G. Varghese, “Multiway Range
Trees: Scalable IP Lookup with Fast Updates,” Computer Netw.,
vol. 44, no. 3, 2004, pp. 289-303.

[10] H. Lu and S. Sahni, “A B-Tree Dynamic Router-Table Design,”
IEEE Trans. Computers, vol. 54, no. 7, 2005, pp. 813-824.

[11] Q. Sun et al., “A Scalable Exact Matching in Balance Tree
Scheme for IPv6 Lookup,” ACM SIGCOMM Data
Communication Festival, IPv6, Aug. 2007.

[12] N. Yazdani and P. Min, “Prefix Trees: New Efficient Data
Structures for Matching Strings of Different Lengths,” Proc. Int.
Database Eng. Appl. Symp., July 2001, pp. 76-85.

[13] M. Behdadfar and H. Saidi, “The CPBT: A Method for Searching
the Prefixes Using Coded Prefixes in B-Tree,” Proc. IFIP
Networking, May, 2008, pp. 562-573.

[14] M. Behdadfar et al., “Scalar Prefix Search: A New Route Lookup
Algorithm for Next Generation Internet.” Proc. IEEE
INFOCOM, Apr. 2009.

[15] M. Behdadfar et al., “IP Lookup Using the Novel Idea of Scalar
Prefix Search with Fast Table Updates,” IEICE Trans. Inf. &
Syst., vol. E93-D, no. 11, Nov. 2010, pp. 2932-2943.

[16] H. Lim, H. Kim, and C. Yim, “IP Address Lookup for Internet
Routers Using Balanced Binary Search with Prefix Vector,”
IEEE Trans. Commun., vol. 57, no. 3, Mar. 2009, pp. 618-621.

[17] K.H. Rosen and J.G. Michaels, Handbook of Discrete and
Combinatorial Mathematics, CRC Press, 2000.

[18] http://bgp.potaroo.net

Mohammad Behdadfar received his BSc,
MSc, and PhD in 1999, 2002, and 2010,
respectively, from Isfahan University of
Technology (IUT), all in electrical and
computer engineering. He is currently with IUT
and is an assistant professor in the Broadcast
Engineering Department of IRIB University.

His current research interests are in the area of high-speed networking,
switch/router design, and algorithms.

Hossein Saidi received the BS and MS in
electrical engineering in 1986 and 1989,
respectively, both from IUT, Isfahan, Iran. He
also received the DSc in electrical engineering
from Washington University in St. Louis, USA,
in 1994. Since 1995, he has been with the
Department of Electrical and Computer

Engineering at IUT, where he is currently an associate professor of
electrical and computer engineering. His research interests include high
speed switches and routers, communication networks, QoS in
networks, queueing system, security, and information theory.

Masoud Reza Hashemix received his BSc and
MS from IUT in 1986 and 1988 respectively,
and his PhD from the University of Toronto in
1998, all in electrical and computer engineering.
From 1988 to 1993, he was with IUT as a
faculty member. From 1998, to 2000, he was a
postdoctoral fellow at the University of Toronto.

He was a founding member of AcceLight Networks in 2000 and has
held various positions, including those in operational teams. Since 2003,
he has been with IUT. His current research interests include
communication networks, next generation services, TE in IP/MPLS,
and sensor networks.

Ying-Dar Lin is a professor of computer
science at National Chiao Tung University
(NCTU), Taiwan. He received his PhD in
computer science from UCLA in 1993. He
spent his sabbatical year as a visiting scholar at
Cisco Systems in San Jose during 2007 to 2008.
Since 2002, he has been the founder and

director of Network Benchmarking Lab (NBL), (www.nbl.org.tw),
which reviews network products with real traffic. He also cofounded
L7 Networks Inc. in 2002, which was later acquired by D-Link Corp.
His research interests include design, analysis, implementation, and
benchmarking of network protocols and algorithms, quality of services,
network security, deep packet inspection, P2P networking, and
embedded hardware/software co-design. His work on “multi-hop
cellular” has been cited over 470 times. He is currently on the editorial
boards of IEEE Communications Magazine, IEEE Communications
Surveys and Tutorials, IEEE Communications Letters, Computer
Communications, and Computer Networks. He published the textbook
Computer Networks: An Open Source Approach with Ren-Hung
Hwang and Fred Baker through McGraw-Hill in February 2011.

