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In this paper, a new soft-fusion approach for multiple-
receiver wireless communication systems is proposed. In 
the proposed approach, each individual receiver provides 
the central receiver with a confidence level rather than a 
binary decision. The confidence levels associated with the 
local receiver are modeled by means of soft-membership 
functions. The proposed approach can be applied to 
wireless digital communication systems, such as amplitude 
shift keying, frequency shift keying, phase shift keying, 
multi-carrier code division multiple access, and multiple 
inputs multiple outputs sensor networks. The 
performance of the proposed approach is evaluated and 
compared to the performance of the optimal diversity, 
majority voting, optimal partial decision, and selection 
diversity in case of binary noncoherent frequency shift 
keying on a Rayleigh faded additive white Gaussian noise 
channel. It is shown that the proposed approach achieves 
considerable performance improvement over optimal 
partial decision, majority voting, and selection diversity. It 
is also shown that the proposed approach achieves a 
performance comparable to the optimal diversity scheme. 
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I. Introduction 

Diversity techniques in digital communication systems 
employ a number of multiple receivers to receive redundant 
information and a central receiver to fuse the local receiver 
decisions. A proper fusion of the multiple receivers information 
in the central receiver results in improved performance. This is 
equivalent to a decision system with data fusion [1]-[4]. 
Diversity techniques are now being employed in a wide variety 
of applications [5]-[12]. Data fusion with multiple receivers in 
digital communication systems can be performed in three 
manners. In the traditional method, the multiple receivers send 
all observations directly to the central receiver without any 
processing [13], [14]. In this case, the individual receivers 
produce samples with very large number of bits per individual 
receiver observations. Also, the entire system resembles the 
diversity schemes considered for analog receiver 
implementations. The receiver observations are then combined 
in the central receiver to form a final decision on which symbol 
was transmitted. This method is called optimal diversity. 
Optimal diversity is considered by the majority of research in 
this area, such as with the maximal ratio combiner [15]. The 
receiver structure of optimal diversity schemes is very 
complicated, and its realization is based on the assumption that 
the channel attenuations and the phase shifts are known 
perfectly, which is an unrealistic assumption. In addition, this 
method is inconvenient for real-time processing and requires a 
large memory. 

In the second method, each local receiver processes its 
individual observation to derive a preliminary single bit 
decision (0 or 1) on which the symbol was transmitted. This 
method is called partial (binary or hard) decision processing 
[16], [17]. The receiver preliminary decisions are sent to the 
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central receiver where they are fused for global decision 
making. This method simplifies the local and central receiver 
structures at the expense of a loss in performance. The 
performance is degraded because the central receiver receives 
partial information (binary decision) and does not receive the 
individual receiver observations. The advantages in simplified 
receiver structures, real-time processing, and cost may 
outweigh the loss in performance. 

In the third method, each local receiver obtains a soft-decision 
(more than one bit) rather than a binary (single bit) decision. 
Soft-decision method provides a measure of confidence in 
receiver decisions. In this case, several bits are used to represent 
the local receiver decisions and the reliabilities of these decisions. 
This method is used to reduce the performance loss of the binary 
decision processing compared to that of optimal diversity. Many 
authors made significant contributions in this area. The optimal 
decision fusion in the Neyman-Pearson sense is derived in [18] 
when the local receivers transmit one binary quality information 
bit in addition to the individual binary receiver decisions. This 
method uses three different thresholds at each receiver. A binary 
1 quality bit indicates “confidence” while a binary 0 quality bit 
indicates “no confidence.” A binary 1 quality bit is sent along 
with the individual receiver decision when the receiver 
likelihood ratio is either greater than the upper threshold or lower 
than the lower threshold. Otherwise, a binary 0 quality bit is sent. 
In this case, the receiver decisions are called semisoft decisions. 
To simplify the complicated analysis in [18], the case of identical 
receivers is considered. The general case of transmitting multiple 
bits local decisions studied in [19], where the optimum multiple 
bits local decision is derived using the maximum distance 
criterion. This entails a subpartitioning of the local decision space. 
While [19] considered the case of only three thresholds and two 
bits per decision, the solution is very complicated and requires 
analytic expression for the functional relationships between the 
probabilities of error and the receiver thresholds and their 
derivatives. A multilevel quantization and fusion approach for 
n  sensors are proposed in [20]. This approach uses integer 
thresholds and is considered as a modified version of the 
counting rules. A multilevel quantization approach for 
multisensor distributed detection system is proposed in [21]. In 
this approach, the fusion center combines the sensor soft 
decisions and the fusion rule does not take the sensor reliabilities 
into consideration. Quantization for the decentralized hypothesis 
testing problem has been discussed in several studies (see [22] 
for an example). Several others have also made significant 
contributions. Clearly, the optimum determination of the fusion 
rule in case of distributed detection systems with soft decisions is 
hardly tractable, and an analytical solution is not possible [23]-
[25]. The optimum structure for fusing multiple bits decisions 
according to the minimum probability of error is derived in [5]. 

This entails optimum quantization for obtaining the optimum 
receivers thresholds and optimum quantization levels. When the 
receivers are not identical (practical case), the problem of 
determining the optimum quantization levels and thresholds is 
much more complicated [26], [27]. Thus, the computational cost 
in generating the optimal solutions is usually excessive and 
infeasible for real-time processing. 

In this paper, a simple and efficient soft-decision fusion 
approach for multiple-receiver digital communication systems 
is proposed. Instead of a one-bit hard decision, we propose that 
each local receiver provides the fusion center with soft 
decisions. Each receiver’s soft decision represents its degree of 
confidence in that decision. Unlike the published soft-decision 
models, the central receiver of the proposed approach 
combines reliability terms weighted by the corresponding 
confidence levels to decide which symbol was transmitted. The 
proposed soft-decision approach can be applied easily to non-
identical receivers (practical case). It can also be applied easily 
to any number of sensors, any type of distributed observations, 
and any number of bits per decision. These advantages could 
reduce cost and complexity considerably. 

The remainder of this paper is organized as follows. Since 
the proposed soft-decision approach is based on binary digital 
communications, a quick review of the optimal binary decision 
fusion is presented in section II. The proposed soft-decision 
approach is presented in section III. Performance 
characteristics of the proposed approach and comparison to 
other diversity schemes are discussed in section IV. We 
illustrate the characteristic of the proposed approach in binary 
noncoherent frequency shift keying (NCFSK) digital 
communication systems in slow Rayleigh fading and additive 
white Gaussian noise (AWGN) channels. Nevertheless, the 
proposed soft-decision approach can be applied to other digital 
communication systems for other interference types in much 
the same way. The results show that the proposed approach is 
simple and efficient. Finally, concluding remarks are given in 
section V. 

II. Review of Decision Fusion in Binary 
Communication Systems 

In binary communication systems, we are interested in 
discriminating between two message symbols 0 and 1, encoded 
as two known waveforms s0(t) and s1(t). We suppose that we are 
to process a received signal r(t) in additive noise n(t). This is a 
binary hypothesis testing problem with two hypotheses: H0 
designating bit 0 and H1 designating bit 1, that is, 

0 0

1 1

: ( ) ( ) ( ),
: ( ) ( ) ( ).

H r t s t n t
H r t s t n t

= +

= +
            (1) 
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Fig. 1. Decision fusion in digital communication systems. 
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We assume that there are n local receivers, as shown in Fig.1, 
with statistically independent observation 1 2, ,..., ,nr r r and have 
known probability distributions under both hypotheses 

0( | )R if r s and 1( | ),R if r s 1,2,..., .i n= It is also assumed that 
the observation at the i-th receiver is a scalar ri. The i-th 
receiver output, 1,2,..., ,i n=  is a binary bit decision ui based 
only on the observations available at the corresponding receiver. 

For each local receiver, the optimum structure should 
calculate the likelihood ratio and compare it to a likelihood 
threshold [28]. The binary decision rule at each local receiver 
can be described as 

1

0

( | )
1, if ,

( | )
0, otherwise,

R i
i i

R ii

f r s
LR t

f r su
⎧

= ≥⎪= ⎨
⎪
⎩

         (2) 

where LRi is the likelihood ratio at the i-th receiver, and the 
receiver’s threshold, ti, is depending on the criterion of 
optimality. When the receiver signal-to-noise ratio (SNR) 
estimates are available, and the receiver’s SNR changes so 
slowly such that the SNR’s estimates can be sent to the central 
receiver with very high precision, the conditional probability 
distributions in (2) can be replaced by 0( | , )R i if r s γ and 

1( | , ), 1,2,..., ,R i if r s i nγ = where iγ  is the SNR estimate at 
receiver i [5]. 

The binary decisions from the n communication receivers, 
1 2, , ..., ,nu u u are then sent to a digital central receiver to 

derive a global decision ŝ on which symbol was transmitted. 
According to the minimum probability of error rate criterion, 
the optimal decision combining rule for equally likely message 
bits (ones and zeros equally likely) is the maximum likelihood 
(ML) decision rule, namely ˆ 1s =  is chosen if [17], [29] 

.)|...,,,Pr()|...,,,Pr( 021121 suuusuuu nn >        (3) 

The ratio 1 2 1

1 2 0

Pr( , ,..., | )
Pr( , ,..., | )

n

n

u u u s
u u u s

is called the likelihood ratio  

of the set of the individual receiver decisions. By assuming the 
case of independent receiver observations, the optimal decision 
rule reduces to 
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0
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si

w
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>
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where the coefficients , 1,2,..., ,iw i n= are given in terms of the 
probabilities of correct decision (Pci), and the probabilities of bit 
error (Pei) as 
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The optimum fusion rule (4) is interpreted as the sum of the 
reliabilities of the receiver decisions. The global decision of the 
central receiver is based on the sign of this sum. 

III. Proposed Soft-Decision Diversity Fusion Approach 

The main steps of the proposed soft-decision fusion 
approach are: (1) obtaining the local receiver’s soft decisions, 
and (2) fusing the local receiver’s soft decisions. These two 
steps are illustrated in the following subsections. 

1. Obtaining the Local Receiver’s Soft Decisions 

In the hard-decision case, a one-bit hard decision (0 or 1) is 
made at each receiver in complete favor of one symbol 
regardless of the distance between the likelihood function and 
the receiver’s threshold. Thus, the hard-decision case is 
equivalent to a two-level quantization of the likelihood ratio. 
However, some receivers may have high confidence levels on 
their individual decisions such that the decision thresholds are 
crossed by a large margin. With soft decisions, each sensor 
would be able to convey its confidence level to the central 
receiver. This can be done by smoothing the local receiver 
decisions using a soft-membership function. The soft- 
membership function of a receiver generates a soft-decision 
value between 0 and 1 according to the difference between the 
individual receiver likelihood ratio and the individual receiver 
threshold. 

This can be done by smoothing the local receiver decisions 
using a soft-membership function µ. The purpose of the soft-
membership function is to retain more information and to 
reduce the performance loss compared to that of the optimal 
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Fig. 2. Membership function. 
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diversity scheme. For a local receiver i, the value of µi is 
proportional to the degree of confidence in deciding s0 and s1. 
By this way, the receiver likelihood ratio is compressed into the 
range (0, 1), which makes it possible to be quantized. 

The value of the membership function should satisfy the 
following conditions [1], [13], [30], [31]: (i) the local receiver’s 
decisions are soft values between 0 and 1, that is, 
0 1, 1,2,..., ,i i nμ≤ ≤ = (ii) higher signal levels have a higher 
grade of membership, (iii) the grade of membership for low 
signal levels is 0, (iv) the grade of membership for high signal 
levels is 1, and (v) if a receiver likelihood ratio is equal to the 
receiver threshold, the value of the membership function will 
be 0.5. These conditions can be satisfied using a membership 
function like that shown in Fig. 2 (solid curve). Figure 2 
compares the soft-membership and hard-membership (dashed 
curve) functions. Clearly, the performance of the soft-decision 
approach depends on the choice of the soft-membership 
function. The soft-membership function shown in Fig. 2 (solid 
curve) is appropriate in case of a symmetric probability density 
function like Gaussian distributed observation. In general, no 
single best membership function arises for all expected 
scenarios and different types of probability density functions 
under hypotheses. Logically, for a given sensor, the soft-
membership value depends on the difference between the local 
likelihood ratio and the sensor’s threshold. As shown in Fig. 2, 
a strip (tmin, tmax) about the threshold ti of an individual receiver i 
is designated as region of no confidence. If the likelihood ratio 
(LRi) of receiver i falls into this region, a soft decision µi, 
0<µi<1, is transmitted. The two regions forming the 
compliment of the (tmin, tmax) region are considered confidence 
regions. When LRi falls into one of the two confidence regions, 
µi will take the value 0 or 1. It is clear from Fig. 2 that the value 

of the soft-membership function µi depends on the difference 
between the likelihood ratio, LRi, and the receiver threshold ti. 
If this difference is low enough min( ),iLR t≤  µi will take the 
value 0. If the difference is high enough max( ),iLR t≥  µi will 
take the value 1. If tmin < LRi < tmax, the membership function µi 
takes a value between 0 and 1.  

For LRi > ti (µi > 0.5), the degree of confidence in deciding s1 

is µi. For LRi < ti (µi < 0.5), the degree of confidence in deciding 
s0 is 1–µi). 

The membership function shown in Fig. 2 (solid curve) can be 
expressed in terms of the local likelihood ratio as 
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where ti = (tmax–tmin)/2. The actual values of tmin and tmax 
depend on the region of no confidence and the expected 
signal range under s0 and s1. In (7), we choose the square of 
the difference between the receiver’s likelihood ratio and the 
receiver’s threshold to achieve a more gradual membership 
function.  

The soft decision at each local receiver i can be described as 
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and the corresponding confidence level on deciding s0 and s1 
will be 
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    (9) 

The values of the membership function of the local receivers 
are quantized and sent to the central digital receiver. A scalar 
quantizer is used to map the input value of the membership 
function µi into an output variable µij (∈ the interval [0, 1]), 
j =1, 2,…, Q, using a Q-level quantizer. The terminals of each 

quantization interval j have corresponding thresholds denoted 
by ti(j–1) and tij and a corresponding quantizer output µij. The 
lower limit of the quantization intervals is t0 (t0=tmin), and the 
upper limit is tQ (tQ=tmax). We do not address the problem of 
optimum quantization but simply adopt the true values of the 
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confidence levels, (9), on deciding s0 and s1. 

2. Fusing Local Receivers Soft Decisions 

Let 0
iΩ  be the local soft-decision space for receiver i such 

that µi=0, 0
ijΩ is the local soft-decision space such 

that 0.5, 1,2,..., / 2i j Qμ < = , 1
ijΩ  is the local soft-decision 

space such that µi > 0.5, ( / 2 1),j Q= + ( / 2 2),...,Q Q+ , and 
1
iΩ  is the local soft-decision space such that µi = 1. The soft-

decision values are then given as 
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The local binary-decision spaces ( and i i
+ −Ω Ω ) can be 

written in terms of the local soft-decision spaces as 
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Equation (11) is interpreted as subpartitioning of the local 
receiver decision space into disjoint soft-decision spaces, that is, 

, , 0,1, .k k
im ij i k m jφΩ ∩ Ω = ∀ = ≠          (12) 

The central digital receiver implements the ML decision rule 
using all the receiver’s soft-decisions 1( { ,..., })nμ μ=μ that 
the individual receivers have communicated, that is, it 
formulates the likelihood ratio function (assuming independent 
receiver decisions) 
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The main idea of the proposed approach is to weight each 
reliability term (in each soft-decision space) in (15) by the 
corresponding confidence level in deciding hypotheses s0 and 
s1. The sensors confidence levels are determined using (9) in 
accordance with the distance between the local receiver 
decision statistics and the receiver thresholds. In this case, the 
global decision statistic will be a weighted sum of the local 
receiver decision statistics. Taking the logarithms in (15) and 
taking into consideration the confidence levels of the sensor 
soft decisions in (9), the likelihood ratio function can be 
rewritten as 
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where e / kij sP and c / kij sP are the probability of error and 
probability of correct decision of receiver i, respectively, in 
quantization interval j given sk was transmitted, k = 0,1. The 
probability terms c / ki sP and e / ki sP have similar definitions in 
the intervals [ 0, t−∞ ] and [ ,Qt ∞ ], respectively. From (16) and 
(17), the decision rule of the central receiver reduces to 
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where the coefficients , 1, 2,..., ,ic i n= are given in terms of 
reliability terms weighted by the soft-decision confidence 
levels as 
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For given probability density functions of the observations 
under both hypotheses ( )|( 0srf iR and )|( 1srf iR ), the ratios 
between the reliability terms in (19) can be easily obtained as 
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In the case of equiprobable transmitted bits, that is, Pr(s0 
sent) = Pr(s1 sent) = 0.5, the performance of the central receiver 
is evaluated in terms of the probability of error bit as 
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Fig. 3. Block diagram of each individual receiver in case of
NCFSK. 
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where ( | )

ic i kf c s∑  is the probability density function of the 
sum of the coefficients ci, 1, 2,..., ,i n= given sk was 
transmitted, and k = 0,1. The integrals in (20) cannot be easily 
evaluated; therefore, no analytic expression for the probability 
of error can be easily obtained. Instead, the error rate 
probability is estimated using Monte-Carlo simulation. 

IV. Performance Comparison with Other Diversity 
Combining Schemes 

This section compares the performance of the proposed soft-
decision approach to some diversity schemes assuming that n 
receivers are employed to achieve a diversity gain. We consider 
the case of NCFSK in a nonselective slow Rayleigh fading 
channel corrupted by AWGN, where the fading is assumed to 
be slow enough so that it can be assumed constant over several 
bit periods. We consider cases with independent noise (and 
fading) from receiver to receiver [5]. We also assume that no 
estimates of the receiver SNR’s is available.  

Consider a multipath environment where binary NCFSK is 
to be employed. Each individual receiver employs the structure 
of binary NCFSK receiver [15], as shown in Fig. 3. 

In a slow Rayleigh fading channel, the probability density 
function of the received SNR is given by [5] 
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where 0γ  is the average SNR. The probability of error in case 
of a single channel NCFSK in slow Rayleigh fading is [15] 
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 The likelihood ratio is written as 
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where [5] 
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The performance of binary NCFSK with maximal ratio 
combiner (MRC) (optimal diversity) can be expressed as [15] 
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where by definition 

0

0

.
2

γ
ξ

γ
=

+
                 (28)  

In the case of a majority voting combiner, in which the 
central receiver decides in favor of the majority of the n local 
receivers, the probability of error is [17] 
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where G is the greatest integer / 2,n≤  and 
n
G

⎛ ⎞
⎜ ⎟
⎝ ⎠

 is the  

binomial coefficient. 
 

 

Fig. 4. Bit error rates versus SNR of each individual receiver in
case of NCFSK, n=10. 
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In the case of selection diversity, in which the central receiver 
decision is based on only the channel with the highest SNR, the 
probability of error is [32], [33] 
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In the case of optimal partial decision combining, the 
expression for the probability of error cannot be easily 
evaluated. However, an upper bound can be obtained on the 
probability of error when binary NCFSK is used [17], namely, 
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The membership function defined by (7) is generated within 

the ambiguous interval. The ambiguous interval is defined by 
considering 20%± uncertainty region about the sensor 
thresholds [34]. We can also define the ambiguous interval in 
terms of the expected interference levels [29], [35].  

The bit error rate performance versus SNR curves of a single 
receiver, the majority voting combiner, the selection diversity 
combiner, the optimal partial decision scheme, the proposed 
soft-decision approach, and the optimal diversity scheme, for 
different number of receivers, are shown in Figs. 4 through 6. 
In Fig. 4, we assume that the number of receivers is ten (n=10).  
 

 

Fig. 5. Bit error rates versus SNR of each individual receiver in
case of NCFSK, n=12. 
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Fig. 6. Bit error rates versus SNR of each individual receiver in
case of NCFSK, n=15. 
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Figure 4 shows the performance improvement of the majority 
voting combiner, selection diversity combiner, optimal partial 
decision scheme, proposed approach, and optimal diversity 
scheme over the single receiver performance. The performance 
loss between the optimal diversity scheme and all other 
diversity schemes is obvious. The performance improvement 
of the proposed approach over the majority voting combiner, 
selection diversity combiner, and optimal partial decision 
scheme is also obvious. It is clear that the proposed approach 
reduces the performance loss compared to that of the optimal 
diversity scheme. Figures 5 and 6 show the same results for 12 
and 15 receivers, respectively. These results could simplify the 
receiver structures and reduce the complexity. These results are 
also consistent with those obtained for multiple receivers 
diversity with optimum quantization [1] and for optimum 
distributed detection problem [19].  

V. Conclusion 

A soft-decision diversity combining approach for multiple- 
receiver digital communication systems has been proposed. In 
this approach, the reliability terms of local receivers are 
weighted by the measures of confidence in the local receiver 
soft-decisions. The confidence levels are based on soft-
membership functions, which can be chosen according to the 
underlying process. The fusion rule of the central receiver, 
based on the soft-membership functions, has been derived. 
Performance evaluation of the proposed approach has been 
provided and compared to the performance of the optimum 
diversity scheme, optimal partial decision scheme, majority 
voting combiner, and selection diversity combiner in case of 
binary NCFSK in slow Rayleigh fading. It has been shown that 
the performance of the proposed soft-decision approach is 

better than the performance of the majority voting combiner, 
selection diversity combiner, and optimal partial decision 
scheme. It has been also shown that the performance of the 
proposed approach is reasonably close to the optimal diversity 
scheme. These results could reduce cost and complexity 
considerably. 
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