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Path loss plays fundamental roles in system design, spectrum 
management, and performance evaluation. The traditional 
path loss model has a slight inconvenience; it depends on the 
unknown distance. In this letter, we explore the probability 
distribution function (PDF) of path loss in an indoor office 
environment by randomizing out the distance variable. It is 
shown that the resulting PDF is not Gaussian-like but is 
skewed to the right, and both the PDF and the moments are 
related to the size of the office instead of the unknown distance. 
To be specific, we incorporate the IEEE 802.15.4a channel 
parameters into our model and tabulate the cumulative 
distribution function with respect to different room sizes. 
Through a simple example, we show how our model helps a 
cognitive spectrum user to infer path loss information of 
primary users without necessarily knowing their transmitter-
receiver distance. 
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I. Introduction 

Path loss is a physical phenomenon in wireless transmission, 
indicating the power loss after a signal passes through a 
wireless channel. In the design of a conventional system, path 
loss is used to budget the transmit power, determine the signal 
coverage, and evaluate the bit-error performance. In the state-
of-the-art cognitive radio network, path loss is used in optimal 
resource allocation and dynamic spectrum management [1]. 
However, the conventional path loss model has a remarkable 
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shortcoming. It depends on the path distance, which can be 
measured by the communicating partners but is unknown to 
other interested onlookers, such as cognitive secondary 
spectrum users, who are obliged to be aware of the primary 
users’ parameters, including the distance and path loss, before 
making spectrum-access decisions. In cases where the 
provision of such information by the primary users is 
impractical, either because an older-type device is incapable or 
a broadcasting channel is unavailable, the path loss statistics 
become most desirable. 

II. Probability Distribution of Indoor Path Loss  

1. Path Loss Model in Literature 

Path loss is defined as the transmit power divided by 
received power and is typically characterized in decibel scales 
as 

0 1010 logL l n D S= + + ,           (1) 

where l0 is the path loss at a reference distance (d0=1 m); n is 
the path loss exponent; D is the transmitter-receiver separation, 
defined as link distance or path distance; and S is the 
shadowing, known as Log-normal, 2~ (0, ).SS N σ  

Also, typical in these models is that the distance D is 
invariably treated as deterministic. In a cognitive radio network, 
radio devices are confined within a geographical region, such 
as an indoor office environment, where the distance itself is at 
random. Then, we can randomize the distance by relating it to 
the size of the office environment. In what follows, we refer to 
the office environment as a room and define the size of the 
office as ‘room size.’ We seek to derive the probability 
distribution function (PDF) of the path loss with the 
randomized distance.  
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2. PDF of Path Loss L in a Square Region 

Before proceeding, we examine the dependency of channel 
parameters on distance. Obviously, l0, n, and Sσ  are site 
specific and may vary from room to room [2]. In our current 
study, we focus on a single room, not on many rooms. As a 
result, it is plausible to assume that the above three parameters 
are independent of D, and to view the path loss L as a function 
of two random variables.  

For simplicity, let us normalize L as 

0 1010 log
.

S S S

L l n D SU
σ σ σ
−

= = +            (2) 

Then the normalized shadowing parameter is  
/ ~ (0,1).SS Nσ  
Next, let us elaborate on the PDF of D. To save space, we 

focus on a square office room with side length denoted by a. 
Suppose A(X1, Y1) and B(X2, Y2) represent a pair including a 
transmitter and receiver, which are uniformly distributed over 
the interior of the region. The coordinates X1, Y1, X2, and Y2 are 
assumed independently and uniformly distributed over the 
interval [0, a]. The distance between A and B is 

2 2
1 2 1 2( ) ( )D X X Y Y= − + − , 

which has a PDF given as a piecewise function [3]: 
3 2

4 3 2

2 23

4 2 2 3 2

3 2

4 3 2

3

4

2 8 2 ,

0 ,
( ) 82 4 8arcsin( / ) 2 ,

2

2 8 2 ,

0 ,
(3)8( 2 ) ,

3
2 ,

D

d d d
a a a

d a
f d d ad a d d

a a a a a

a d a

d d d
a a a

d a

d a
a

a d a

π

π

π

⎧
− +⎪

⎪
≤ <⎪

⎪=⎨ ⎡ ⎤−⎪ ⎢ ⎥− + − + + −
⎪ ⎢ ⎥⎣ ⎦⎪
⎪ ≤ ≤⎩
⎧

− +⎪
⎪

≤ <⎪⎪≈⎨
− −⎪

⎪
⎪

≤ ≤⎪⎩

 

where the approximation results from Taylor series expansion 
applied to the second part of fD(d) on the interval [a, 2a ]. The 
underlying consideration for the approximation is twofold: first, 
to reduce the computational complexity; second, to keep the 
approximation error, measured in the area under the graph of 
fD(d), well below 0.5%. This requires that the Taylor series be 
centered at the right endpoint 2d a= . Also, the expansion 
order should be three.  

Let 1010 log ( ) / .SY n D σ=  Then, the PDF of Y can be 

transformed from (3) as  
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where ln(10) /(10 ).S nξ σ=  
Furthermore, as S and D are independent, the PDF of U is 

the convolution integration of fY(y) with the Gaussian normal 
function:  

2

29
2

2

2

2

2 2 2

2

3 2

3

4 8 2

4

4 8

4

2 2

1 ( )( ) ( ) exp
22

ln 2
2

4 ln 2
2

ln 2
2

4
3

ln( 2 ) 2 ln 2
2 2

U Y

u

u

u

u

u yf u f y dy

e e u aerfc
a

e e u aerfc
a

e e u aerfc
a

e e
a

u a u aerfc erfc

ξ ξ

ξξ

ξ ξ

ξ ξ

π

ξπ ξ ξ
ξ

ξ ξ ξ
ξ

ξ ξ ξ
ξ

ξ

ξ ξ ξ ξ
ξ ξ

∞

−∞

⎡ ⎤−
= −⎢ ⎥

⎣ ⎦
⎛ ⎞− +

= ⎜ ⎟
⎝ ⎠

⎛ ⎞− +
− ⎜ ⎟

⎝ ⎠
⎛ ⎞− +

+ ⎜ ⎟
⎝ ⎠

−

⎛ ⎞− + − +
−⎜ ⎟⎜ ⎟

⎝ ⎠

∫

29
2

2

21
2

3

3

2 2

2 2

2

2 2

2

4 2

ln( 2 ) 2 ln 2
2 2

8

ln( 2 ) 2 ln 2
2 2

8 2
3

ln( 2 ) 2
2

u

u

u

e e
a

u a u aerfc erfc

e e
a

u a u aerfc erfc

e e
a

u aerfc

ξξ

ξ ξ

ξξ

ξ

ξ ξ ξ ξ
ξ ξ

ξ

ξ ξ ξ ξ
ξ ξ

ξ

ξ ξ
ξ

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

+

⎡ ⎤⎛ ⎞ ⎛ ⎞− + − +
−⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

−

⎡ ⎤⎛ ⎞ ⎛ ⎞− + − +
−⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

+

⎛ ⎞− +
−⎜ ⎟⎜ ⎟

⎝ ⎠

2ln 2 ,
2

for ln( 2 ) / 3, (5)

u aerfc

u a

ξ ξ
ξ

ξ

⎡ ⎤⎛ ⎞− +
⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

≤ +

 

where erfc(·) is the complementary error function. 
The domain of u is determined as follows. The normal curve 

can be thought of as effectively supported on [–3, 3], which is 
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the 99.9% confidence interval. Whereas, the support of fY(y) is 
( , ln( 2 ) / ].a ξ−∞  Obviously, if [ln( 2 )] / 3,u a ξ> + the 
graph of fY(y) and the right-shifted-by-u graph of the normal 
curve will no longer overlap, leading the convolution 
integration in (5) to zero. Therefore, [ln( 2 )] / 3.u a ξ≤ +  

Finally, the PDF of L is transformed from (5) as  

 0
0

ln( 2 )1( ) , for 3 .S
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f l f l l
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σ σ ξ
⎛ ⎞−
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3. CDF and Moments of L 

From (5), (6), and (1), we work out the moments of L as 

0( ) 10 [ln( ) 0.81] / ln(10)E L l n a≈ + − ,        (7) 
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The PDF and the mean of L are no longer dependent on the 
distance but on the room size a. The variance of L is even 
independent of a due to the fact that the ratio D/a in (8) is 
indeed the distance normalized to the size a. As the distribution 
density of D/a is afD(ad), which is no longer dependent on a, so 
is E[ln(D/a)+0.81]2. The cumulative distribution function 
(CDF) can also be explicitly given, but the resulting formula is 
too lengthy. To save space and also to aid application, we prefer 
to tabulate the CDF in a later section (see Fig. 2) 

4. Suitability 

Until this point, our modeling has been in two dimensions 
and applicable to square regions. Due to the earth’s gravity, 
however, mobile devices are generally not random at a vertical 
z-coordinate in three dimensions. Most of the devices are 
vertically fixed at a height whose difference is negligible 
compared with the difference in horizontal coordinates. In such 
a case, the two-dimensional model suffices. Otherwise, the 
PDFs of d and the logarithm of d in three dimensions should be 
adopted instead of (3) and (4). Our future research work will 
tackle these issues together with the cases of non-square 
operating regions.  

5. IEEE 802.15.4a Specific 

The above PDF, CDF, and moments are applicable to a large 
variety of channel models prevailing in current literature which 
takes the form as given by (1). In what follows, we will 
demonstrate the combination of our model with a state-of-the- 
art channel model in the literature, the IEEE 802.15.4a channel 

 

Fig. 1. PDF of path loss in a square region. 
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Fig. 2. CDF of path loss in indoor square region. 
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model [4], which features the following parameters: 

0

0

LOS : 35.4, 1.63, 1.9,
NLOS: 57.9, 3.27, 3.9.

S

S

l n
l n

σ
σ

= = =
= = =

         (9) 

The resulting PDFs (when a=5 m) are illustrated in Fig.1. The 
PDF under LOS is shown on the left, and the PDF under 
NLOS is on the right. The figure shows that the PDF of path 
loss is not Gaussian-like. It is asymmetric, slightly skewed to 
the right.  

The CDFs are tabulated in Fig. 2. In the figure, three room 
sizes are included in which a is 2 m, 5 m, and 10 m. It is shown 
that with the increase of the room size, the CDF curves are 
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shifted towards right, suggesting that, in statistical sense, a 
larger room size leads to a more severe path loss.   

III. Example 

We provide a simple example on how to use our model in 
practice.  

Suppose the room size is a=5 m, which is either given as a 
design parameter or measured by cognitive devices. Also, 
suppose that a 95%-confidence path-loss interval is guaranteed 
to the primary user, namely, ˆ( ) 95%.P L L≤ = Now, cognitive 
secondary spectrum users are going to re-use the spectrum in 
an opportunistic manner. To do so, they are obliged to predict, 
in a statistical manner and without knowing the distance 
between the primary transmitter and receiver, what the primary 
user’s maximum path loss is.  

As an NLOS path causes larger path loss for the primary user, 
by consulting the second curve within the NLOS group in  
Fig. 2, the cognitive users know that probability of 95% at a=5 
corresponds to a path loss: 

ˆ 82 dB.L =                    (10) 

Meanwhile, if the secondary users know the primary user’s 
nominal effectively-radiated power (ERP), they can estimate 
the latter’s average received signal power by subtracting the  
ERP with the predicted path loss ˆ( 82 dB)L = without 
measuring the path distance first. 

IV. Conclusion 

By randomizing out the path distance, we derive the 
probability distribution function (PDF), as well as the moments, 
of path loss for wireless networks operating in an indoor square 
region. The resulting PDF and the mean of the path loss are 
related to the room size instead of the path distance. The PDF is 
not Gaussian-like but is asymmetric and skewed to the right. 
Our model can be combined with a large variety of the 
traditional channel models in the literature. To aid application, 
we tabulate the cumulative distribution functions by 
referencing to the prevailing IEEE 802.15.4a channel 
parameters. 

Through a simple example, we show how our model helps 
cognitive secondary users to predict the path loss information 
of a primary spectrum user without knowing the latter path 
distance first. 
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