
60 Sungkyu Cho et al. © 2011 ETRI Journal, Volume 33, Number 1, February 2011

Software is completely exposed to an attacker after it is
distributed because reverse engineering is widely known.
To protect software, techniques against reverse
engineering are necessary. A code encryption scheme is
one of the techniques. A code encryption scheme encrypts
the binary executable code. Key management is the most
important part of the code encryption scheme. However,
previous schemes had problems with key management. In
an effort to solve these problems in this paper, we survey
the previous code encryption schemes and then propose a
new code encryption scheme based on an indexed table.
Our scheme provides secure and efficient key
management for code encryption.

Keywords: Code encryption, reverse engineering,
software protection, tamper resistance.

Manuscript received Jan. 26, 2010; revised June 28, 2010; accepted July 15, 2010.
This research was supported by the Ministry of Knowledge Economy (MKE), Rep. of

Korea, under the Information Technology Research Center (ITRC) support program
supervised by the National IT Industry Promotion Agency (NIPA)” (NIPA-2010-(C1090-
1031-0005)), and also supported by the IT R&D program of MKE, Rep. of Korea
[Development of Privacy Enhancing Cryptography on Ubiquitous Computing Environment].

Sungkyu Cho (phone: +82 10 4301 3350, email: skcho@security.re.kr), Donghwi Shin
(email: dhshin@security.re.kr), Heasuk Jo (email: hsjo@security.re.kr), Donghyun Choi
(email: dhchoi@security.re.kr), Dongho Won (email: dhwon@security.re.kr), and Seungjoo
Kim (skim@security.re.kr) are with the School of Information and Communication
Engineering, Sungkyunkwan University, Suwon, Rep. of Korea.

doi:10.4218/etrij.11.0110.0056

I. Introduction

The Business Software Alliance estimated that the monetary
value of copyright infringement was US $53 billion in 2008 [1].
This was up US $5.1 billion from 2007. The major reason for
copyright infringement is that software is completely exposed
to an attacker after it is distributed since reverse engineering is
widely known [2]-[5].

Therefore, to protect software, techniques against reverse
engineering are necessary. A code encryption scheme is one of
the techniques. A code encryption scheme encrypts the binary
executable code. This is accomplished by encrypting the
program at some point after it is compiled [6], [7]. However,
skillful reverse engineers can easily find the secret key. To
solve this problem, a code encryption scheme needs secure key
management.

Cappaert [8], [9] and Jung [10] have proposed code
encryption schemes that generate a secret key with the related
information of a binary code at runtime. However, previous
schemes have problems with key management. First,
Cappaert’s scheme cannot generate the correct secret key. If a
secret key is not generated properly in a code encryption
scheme, it may lead to program crashes or other unintended
behavior. Second, the size of an executable file is increased
considerably in Jung’s scheme; this may lead to an efficiency
problem.

To solve the problems, we review the previously proposed
code encryption schemes, and then we propose a new code
encryption scheme based on an indexed table included in this
paper. Our scheme generates the correct key in any software
which has various structures and with performance advantage.

The remainder of this paper is structured as follows. In
section II, we describe the existing code encryption schemes. In

Secure and Efficient Code Encryption Scheme
Based on Indexed Table

Sungkyu Cho, Donghwi Shin, Heasuk Jo, Donghyun Choi, Dongho Won, and Seungjoo Kim

ETRI Journal, Volume 33, Number 1, February 2011 Sungkyu Cho et al. 61

section III, we propose our encryption scheme based on an
indexed table. We compare previous schemes in section IV.
Finally, our conclusions and a suggestion of possible future
work are in section V.

II. Related work

Code obfuscation and encryption are used to protect
software [11]-[13]. However, code obfuscation merely makes it
time-consuming, but not impossible, to reverse a program.
Therefore, we concentrated on code encryption which can
protect the software from reverse engineering. We searched for
schemes that are related to code encryption and found two
applicable schemes. In this section, we briefly review both
Cappaert’s and Jung’s schemes.

1. Cappaert’s Scheme

Cappaert proposed a partial encryption scheme based on a
code encryption scheme [8], [9]. To apply the partial
encryption scheme, binary codes are divided into small parts
and encrypted. The encrypted binary codes are decrypted at
runtime by users. In this way, the partial encryption overcomes
the weakness of revealing all of the binary code at once
because only the necessary parts of the code are decrypted at
runtime. Cappaert’s scheme is shown in Fig 1.

As shown in Fig. 1, the scheme relies on function encryption
and code dependency. For example, if a calc function invokes a
sum function, the secret key which is used to encrypt a sum
function is the calc function’s own binary code. The sum
function is decrypted at runtime, and then the calc function is

int calc(int x, int y)
{

int ret;
ret=sum(x,y);
return ret;

}

#include<stdio.h>
int calc(int, int);
int sum(int, int);
int main(void)
{

int a=0;
int b=0;
int c;
c=calc(a,b);
return 0;

}

Fig. 1. Example of Cappaert’s code encryption scheme.

main

calc

sum

Encrypt calc function

Encrypt sum function

int sum(int x, int y)
{

return x+y;
}

Fig. 2. Problem of key generation.

A

C B

D

Encrypted with key
KA

Encrypted with key
KA

Cannot determine
the decryption key

decrypted, which invokes a sum function. When the sum
function completes the work, it is encrypted again and stored in
the memory.

In this scheme, all functions decrypt or encrypt another
function using their own code as a key material. This ensures
protection against tampering. If an attacker attempts to tamper
with the protected program execution, the program outputs an
incorrect binary code. Consequently, the binary code will cause
incorrect execution and undesired behavior.

Cappaert’s scheme protects its information using code
encryption, but it does not perform correctly when a function is
invoked by multiple functions. We assume that there are
functions (A, B, C, and D) in the program, as shown in Fig. 2.

According to the scheme, the secret key of function D should
be determined from B or C, but Cappaert’s scheme cannot
determine which secret key is used. Cappaert’s scheme has no
solution to the problem of determining the secret key. For this
reason, Cappaert’s scheme can only be applied to software that
has a single path and cannot be applied to generic software that
has multiple paths.

Cappaert proposed an improved scheme two years later [8].
It is similar to the original scheme, but it has a few
modifications. The original scheme, which was proposed in
2006, uses the caller’s own binary code as the secret key, but
the improved scheme, which was proposed in 2008, used the
caller’s own hash value of the binary code as the secret key.
This can provide tamper-resistance, but key generation and
management problems are still present.

2. Jung’s Scheme

Jung and others proposed a code block encryption scheme to
protect software using a key chain. Jung’s scheme uses a unit
block, that is, a fixed-size block, rather than a basic block,
which is a variable-size block. Basic blocks refer to the parts of
codes that are divided by control transformation operations,
such as “jump” and “branch” commands, in assembly code [8],
[9].

62 Sungkyu Cho et al. ETRI Journal, Volume 33, Number 1, February 2011

Fig. 3. Jung’s code encryption scheme.

Plaintext
block 1

Ciphertext
block 1

Initial
key

Key
generation Encryption

Key
generation

Plaintext
block 2

Encryption

Ciphertext
block 2

Plaintext
block (N-1)

Plaintext
block N

Ciphertext
block N

Key
generation Encryption…

Fig. 4. Flow of the example program.

Block
A

Block
B

Block
C

Block
D

Block
E

Fig. 5. Key chain in Jung’s scheme [10].

Block
A

Duplicate
the block D

Key A

Key A
Key B

Key C

Key D'

Key D

Block
C

Block
B

Block
D'

Block
D

Block
E

Jung’s scheme is very similar to Cappaert’s scheme. As
shown in Fig. 3, this scheme encrypts the N-th block using the
key that was created from the (N–1)th block.

Jung’s scheme tries to solve the problem of Cappaert’s
scheme. If a block is invoked by more than two preceding
blocks, the invoked block is duplicated. We assume the flow of
an example program as shown in Fig. 4.

As shown in Fig. 4, the secret key of block D, which is
invoked by multiple blocks, should be chosen as block B or
block C. According to the Jung scheme, a key chain is
constructed as shown in Fig 5.

At this time, by duplicating the block D on another path, D'
is created. The secret key of E is determined by block D or
block D'; block D and block D' are identical. The secret key of
block D is determined by block B, and the secret key of block
D' is determined by block C. Therefore, the secret key of E is
determined correctly even though the block is invoked by more
than two blocks. A key chain can be achieved in this way, and
then the encrypted code is stored as an executable file.

Jung’s scheme solves the problem of determining the secret

Fig. 6. Novelty of our scheme.

Block
A

Do not need to
duplicate the
block D

Key B Block D was encrypted
with key B

Block
C

Block
B

Block
D

Block
E

Key B

Indexed table

key of a block which is invoked by more than two preceding
blocks. However, it has a disadvantage in aspect of the code
size. According to the scheme, the executable file size is
increased not only in procedure of converting a basic block to a
unit block, but also in the duplicating procedure. In addition, if
the numbers of preceding blocks are increased, the number of
duplicated blocks is also increased equivalently.

To solve this problem, we propose a new scheme based on
an indexed table in this paper. In our scheme (assume that the
flow of an example program is as shown in Fig. 4), block B
and C can decrypt block D without duplicating block D since
block B and C can acquire the key B through the indexed table,
as shown in Fig. 6.

III. Proposed Scheme

We propose a code encryption scheme based on an indexed
table to protect software. The indexed table can solve the
problem of multiple paths. In addition, it solves such problems
as loops, recursions, and multiple calls.

1. Notations and Requirements

The notations in Table 1 are used throughout this paper. IK is
the initial key that protects both the indexed table and the
random number. The random number encrypts basic blocks
that are invoked by multiple blocks, and the IK encrypts the
random number. Providing and managing the IK depends on
the application, and the IK can be stored in an external devices,
such as an external hard drive or a trusted platform module.
Hence, we assume that IK was distributed offline and stored
securely. A random number is used to encrypt a multiple called
block, and the random number is encrypted with IK. PK
denotes the encrypted random number using the key IK, that is,
PK=EncIK(r). The PK is stored in the data section of
executable binary code. Symmetric encryption and decryption
with secret key K are denoted by EncK (·) and DecK (·),

ETRI Journal, Volume 33, Number 1, February 2011 Sungkyu Cho et al. 63

Table 1. Notation.

Notation Description

IK Initial key

PK Protected key

EncK(·) Symmetric encryption with key K

DecK(·) Symmetric decryption with key K

H(·) One-way hash function

r Random number

A to Z Basic blocks in binary code

Pi Basic block of program in plain form

Ci Basic block of program in encrypted form

respectively. However, we will not discuss the encryption or
decryption algorithm itself because it is outside of the scope of
this paper.

A few requirements are necessary for the secure code
encryption scheme:

• Confidentiality. The original binary code should be
protected from static analysis by maintaining confidentiality. To
protect a binary code from a dynamic analysis, which analyzes
data flow and control transformation, a minimal number of
code blocks should be present in the memory. As long as the
code remains encrypted in memory, the program can be
protected from static and dynamic analysis [8].

• Memory dump prevention. If a single routine encrypts a
whole program, the decryption routine decrypts the body and
sets up the starting point of the body as the entry point. At this
time, it can be easily cracked by a memory dump. Therefore,
only a small part of the program should be decrypted, while the
other parts of the program remain in encrypted form.

• Correct key chain. When a code encryption is applied to a
program, the correct key chain is required. If it does not have a
correct key chain for the multiple paths, the system can crash or
engage in an undesired execution.

• Tamper resistance. To protect from tampering, and
maintain integrity [8], [15], [16], we want the following
properties:

- In the encryption process, a one-bit change in a basic block
A affects all following ciphertext blocks.

- In the decryption process, if one or more bits are modified
in encrypted basic block B ', the result of decryption should
be changed by one or more bits.

2. Code Encryption

All of the steps of the code encryption algorithm are shown

Fig. 7. Pseudo-code to encrypt executable file.

Procedure encryption()

1. Compile(); // compile the source code to generate object or
executable file

2.
3. entrypoint ← Find_EntryPoint(); // store an address of

entry point
4. currentAddress = entrypoint; // initialization
5. nextAddress = 0;
6.
7. ConstructTable() // this procedure is described in Fig. 10.
8.
9. nextAddress = Find_next(entrypoint); // find an address of

next block in current block
10. Encrypt(IK, entrypoint); // encrypt first block
11.
12. while(File pointer is not end of file)
13. {
14. if(SearchTable(nextAddress)) // if next block’s flag in

the indexed table indicates 1
15. {
16. random = GenerateRandom(); // generate random

number
17. Encrypt(random, nextAddress); // Encrypt with the

random number
18. Encrypt(random, IK); // Encrypt the random

number with the IK
19. }
20. else // next block’s flag indicates 0

21. Encrypt(random, currentAddress); // Encrypt with
the current block

22. }

Fig. 8. Encryption process flow chart.

End

Encrypt block Pi+1
with H(Pi)

Encrypt block Pi+1
with r

The block is
last one?

Yes

No

Yes

No

Step 1

Step 2

Generate random
number r

The block has
multiple paths?

Construct indexed table

Encrypt a block Pi with
IK (i=1)

Start
(with compiled binary)

Find an address next
block Pi+1 in the table

Step 3

64 Sungkyu Cho et al. ETRI Journal, Volume 33, Number 1, February 2011

Store the next address
in the table

Start

Get next command

End

Store the operand in
the table

Generate PK

Number of calls
+= 1

Flag = 1

Step 2

Initialization

Compute each
block’s size

Loop or recursion
check

Yes

No

Yes

No

Yes

No

Fig. 9. Detailed flow chart of step 2.

The next address
exist in the table?

Is it a last block of
the program?

The next instruction’s
operand indicates jump

or branch?

Fig. 10. Key chain in our scheme.

A

CB

D

F EncH(A)(B)

EncIK(A)

EncH(A)(C)

Encr(D)

in Fig. 7. These code encryption steps are described in the flow
chart of Fig. 8.

Step 1 is the source code compiling process. After this step,
the source code is compiled and outputs a binary image.

Step 2 is construction of the indexed table. It is the most
important procedure of our scheme. We describe the details of
step 2 in Fig. 9.

Lastly, in step 3, the basic blocks are encrypted. This is

1() (),
ii H P iC Enc P
−

= where 0() .H P IK= At this time, i is

Fig. 11. C code and its assembly code.

for(i=0; i<10; i++)
{
 a[i] = rand();
}

loc_401006
call _rand
add esi, 1
cmp esi, 0Ah
jl short loc_401006

the number of blocks in the indexed table. If a flag is not zero,
the block is encrypted by a random number. IK encrypts the
random number which is then stored in an executable image.
This encryption process is needed because if the random
number is exposed, the blocks can be decrypted by the random
number and analyzed by the attacker.

The indexed table is used to make the correct key chain. The
table construction procedure is as follows. First, store the
current address of the basic block, and investigate the “jump”
or “branch” command in the basic block by moving the pointer.
The commands contain a block’s address, which will be
executed next. If the next address refers to the current address
of the basic block, this indicates a loop or recursion. When a
loop or a recursion occurs due to the “cmp” command with the
number of calls, the number of calls is marked in the table.
Likewise, if a current address of a block is stored in the table
already, this indicates multiple calls. The PK is generated at this
time and stored in the binary image in a data section.

As shown in Fig. 10, a basic block D is invoked by multiple
blocks B, C, and F. The secret key of B is the hash value of
block A, and the secret key of block C is the same. F is not
invoked by block A directly, but it invokes the basic block D.
At this time, random number r is generated for the secret key of
D, and then it is encrypted with IK. The result of the encryption
is a PK. The PK is stored in executable images. Generic
operating systems, such as Windows or Linux, store variables
in the data section of an executable image. Therefore, the PK is
stored in the data section of an executable image.

The indexed table contains the number of iterations and
recursions. If this is not considered, a basic block which has
loops or/and recursions will be decrypted multiple times.
Therefore, by marking the number of loops and recursions in
the table, we can prevent this problem. When a basic block has
been called, the number of calls is reduced by one, and then if
the number of calls became zero, the block should be re-
encrypted from memory to protect against a memory dump.
For example, in the case of loop, the source code is written in
the C language, and its assembly code is shown in Fig. 11.

The second operand of the “cmp” command is 0Ah. It
indicates the block “loc_401006” will be carried out 10
(=0x0A) times, and that is the number of loops or recursions.

In conclusion, we can summarize the algorithm of step 2 as

ETRI Journal, Volume 33, Number 1, February 2011 Sungkyu Cho et al. 65

Fig. 12. Pseudo-code to construct indexed table.

Procedure ConstructTable()

1. entrypoint ← Find_EntryPoint(); // store an address
of entry point

2. currentPointer ← entrypoint;
3. nextPointer ← currentPointer++;
4. index ← 0;
5.

6. while(File pointer is not end of file) {
7. if(Current_opcode == jump or Current_opcode == branch){
8. // branch or jump command is an unit of block
9. nextAddress ← operand;

10. // store an address of current address
11. if(currentAddress == nextAddress) {
12. // loop, or recursion
13. Tuple[index].Address ← currentAddress;
14. Tuple[index].Size ← sizeofBlock;
15. Tuple[index].Cnt ← prev_operand_2;
16. Tuple[index].flag ← 0;
17. //index, entry point address, size, number of calling,

and no protected key
18. StoreAttribute(Tuple[index]);
19. }
20. else{
21. if(FindAddress(Tuple[index].currentAddress) {
22. // repeated calling
23. GenerateProtectedKey();
24. StoretoDatasection();
25. Tuple[index].flag ← 1
26. }
27. }
28. }
29. nextBlock ← Get_NextBlock(currentAddress);
30. // Get next block’s address
31. currentAddress ← nextAddress;
32. Sort(Tuple);

33. Compute_blocksize(Tuple);
34. CheckIterations();
35. index++;
36. }

the pseudo-code in Fig. 12. In addition, we can show an
example of constructing the indexed table in Fig. 13.

The example code is composed of five basic blocks. The
basic blocks are divided by “jump” or “branch” commands. At
first, initialization is performed to construct the indexed table.
0x0040103E is set as the starting point of the program. After
this, investigate the commands to find the “jump” or “branch.”
If the command is “jump” or “branch,” store the operand of the
command in the table because it becomes the first address of
another block. In this example, 0x0040105A is stored in the
table because of the command “jne 0x0040105A,” which is
at0x0040104F. The next address of the command becomes the
first address of another block. So, 0x00401051 is stored in the
indexed table. In this way, 0x0040106C and 0x00401060 are
stored in order. At 0x0040106A, the command “jmp

Basic
block

A

B

C

D

E

Fig. 13. Example of constructing indexed table.

0040103E
00401043
00401045
00401048
0040104F

Address
(offset)

Block
size

Number
of calls Flag

0x0040103E 19 1 0
0x00401051 9 2 1
0x0040105A 6 2 1
0x00401060 12 1 0
0x0040106C 8 2 1

···

mov
idiv
mov
cmp
jne

ecx, 64h
eax, ecx
dword ptr [ebp-0Ch], edx
dword ptr [ebp-10h], 8
0040105a

00401051
00401054
00401057

mov
add
mov

edx, dword ptr [ebp-10h]
edx, 1
dword ptr [ebp-10h], edx

0040105A
0040105E

cmp
jge

dword ptr [ebp-10h], 5
0040106c

00401060
00401063
00401067
0040106A

mov
imul
mov
jmp

eax, dword ptr [ebp-4]
eax, dword ptr [ebp-10h]
dword ptr [ebp-4], eax
00401051

0040106C
0040106F
00401072

mov
cmp
jle

ecx, dword ptr [ebp-4]
ecx, dword ptr [ebp-8]
0040108a

Fig. 14. Pseudo-code to decrypt executable file.

Procedure Decryption()

1. entrypoint ← Find_EntryPoint(); // store an address of
entry point

2. currentAddress = entrypoint; // initialization
3. nextAddress = 0;
4.
5. nextAddress = Find_next(entrypoint); // find an address

of next block in current block
6. Decrypt(IK, entrypoint); // decrypt first block
7. Execute(currentAddress); // execute the first block
8.
9. while(File pointer is not end of file)

10. {
11. if(LookupTableTable(nextAddress)) // if next block’s flag

in the indexed table indicates 1
12. {
13. random = ExtractRandomNumber(nextAddress, IK);
14. // extract the random number with IK
15. Decrypt(random, nextAddress); // decrypt with the

random number
16. }
17. else // next block’s flag indicates 0
18. Decrypt(random, currentAddress); // encrypt with the

current block
19.
20. Execute(nextAddress); // execute the next block
21. ReEncrypt(currentAddress);
22.
23. }

0x00401051” is identified. 0x00401051 has been stored
already, which indicates that there are multiple paths regarding
the address 0x00401051. Hence, the block’s information

66 Sungkyu Cho et al. ETRI Journal, Volume 33, Number 1, February 2011

Fig. 15. Decryption process flow chart.

End

Decrypt a block Pi

Start
(with indexed table)

Yes

No

Yes

No

Find an address next
block Pi+1 in the

table

Step 1

Step 2

Decrypt the PK and
extract r

Execute the Pi

Re-encrypt the Pi

Step 3

Step 4

Step 5

The block has
multiple paths?

Decrypt block Pi+1
with H(Pi)

The block is
last one?

Decrypt block Pi+1
with r

Table 2. Security comparisons between existing schemes and ours.

Security
requirements

Cappaert’s
scheme

Jung’s
scheme

Proposed
scheme

Confidentiality O O O
Memory dumping

prevention O O O

Correct
key chain

X O O

Tamper resistance O O O

should be updated, and the random number should be
generated as well. In this way, all the blocks can be identified.

3. Code Decryption

We can summarize the algorithm of all of the steps for the
decryption process as the pseudo-code in Fig. 14.

The algorithm is divided into four steps: the lookup step,
decryption step, execution step, and re-encryption step. These
code decryption steps are described in the flow chart of Fig. 15.

At the beginning of the program’s execution, the indexed table
should refer to the entry point of the program, and then the
encrypted block Ci should be decrypted into executable code Pi.
Decrypted code Pi is executed after the block is decrypted using

Table 3. Comparisons of increased size of executable file when block
has n paths.

 Jung’s scheme Proposed scheme
Increased size of
executable file (n–1)·k l

the preceding block’s hash value. If a Pi-1 has tampered into P'i-1,
the secret key will be H(Pi-1) ≠ H(P'i-1), so Pi cannot be
decrypted properly. The indexed table contains the flag, which
indicates whether the block uses random numbers or not. If the
flag is 1, the encrypted block is decrypted by a random number.
When the decrypted code completes the work, it is encrypted
again and stored in the memory.

IV. Analysis

This section begins with security analysis of the proposed
scheme. Then, we show performance analysis and
comparisons to clarify the advantage of our scheme. Lastly, we
present the result of the experiment.

1. Security Analysis

To improve security, we adopted the indexed table based on
a code encryption scheme. Cappaert’s scheme does not meet
the previously discussed security requirements. Our scheme
meets the security requirements as described in Table 2.

The original binary code should be protected from static
analysis and dynamic analysis by remaining confidential. Our
scheme divides the program into basic blocks and then
encrypts these basic blocks. It protects the confidentiality of the
software. Our scheme achieves memory dumping prevention
because our scheme decrypts only small parts of the code, so
codes are not revealed all at once in the memory. The key chain
is accomplished by using a random number. When a basic
block invokes another block that is invoked by multiple blocks,
a random number is used to decrypt the block. Cappaert’s
scheme did not satisfy the correct key chain requirement as
previously discussed in section II. Tampering with a block is
detected because the hash value of Pi-1 was used as the secret
key. If an attacker tampers with a plain or encrypted block, a
corrupted code is generated at the later stage and thus the
system will most likely crash due to an illegal instruction.

2. Performance Analysis

We analyze the efficiency when multiple paths occur.
Cappaert’s scheme did not consider multiple paths. Jung’s

ETRI Journal, Volume 33, Number 1, February 2011 Sungkyu Cho et al. 67

Fig. 16. Common target program.

Block A

Block B Block C

Block D

Block E

34 byte

5 byte 16 byte

20 byte

20 byte

Table 4. Performance comparisons between existing schemes and
our scheme.

Feature
Cappaert’s

scheme
Jung’s
scheme

Proposed
scheme

Original file size (B) 95 95 95

Number of blocks 5 5 5
Number of

multiple paths
1 1 1

Decryption and
re-encryption time (s)

- 0.0000857 0.0000446

Ct - 4.28 2.23

Cs - 1.02 0.84

scheme considered multiple paths, but it created additional
overhead whenever it faced multiple paths because the invoked
block was duplicated. We assume that there are n multiple
paths. For example, in Fig. 10, D has 3 paths, thus n is 3.
Additionally, we assume that k is a unit block’s size, and l is the
key size, which is originally a random number. At this time,
when a block has n paths, the increased size of the executable
file is as in Table 3.

The number of paths of a block n is always larger than 2.
Thus, if k is larger than or equal to l, the increasing size of the
executable file of Jung’s scheme is always larger than in our
scheme. Jung specified the k in his paper, and it was usually
16 B, 32 B, or 64 B. Consequently, if the size of a random
number is specified as 16 B, the size of the executable file in
Jung’s scheme is always larger than in our scheme. If a
program has additional multiple paths, the size differential
between the schemes will increase.

We next compare the performance of our scheme with other
schemes. Due to the fact that all of the schemes are
implemented in different operating systems and test
applications by authors of previous schemes, we assume a
common target program as shown in Fig. 16. Although the
structure of the program is very simple, it is used frequently in
general software. The program has a total of 95 B and a

0.00002 s execution time. It is constructed with 5 blocks. In
addition, it has one multiple path.

To compare, we use a method that is presented in [4].
Suppose that we have a program P and its modified version P'.
Then, we define the time cost Ct and the space cost Cs as

t

s

(')(, ') ,
()
(')(, ') ,
()

T PC P P
T P
S PC P P
S P

=

=

where T(X) is the execution time of program X, and S(X) is its
size. The result of the performance is shown in Table 4.

Cappaert’s scheme cannot execute the common target
program since the program has one multiple path. In Jung’s
scheme, the executable file size and execution time are
increased since the scheme needs to convert a basic block to
unit blocks and then duplicate the unit blocks. In this example
program, 95 B codes are increased by 192 B, thus space cost Cs
value is 1.02, and time cost Ct value is 4.28. In contrast with
existing schemes, our scheme has 80 B of additional data, the
space cost Cs value is 0.84, and the time cost Ct value is 2.23. Cs
value and Ct value show that our scheme has better performance
over Cappaert’s scheme. In practice, the advantage of storage
and time cost is useful in real time systems or in embedded
systems which have constraints of performance.

3. Experiment

Next, we show the implementation and our evaluation of the
proposed scheme. We implemented our scheme in the
environment described in Table 5.

The process of the implemented program is shown in Fig. 17.
Initially, an executable file is input into our program, and then
the file is disassembled. The result of the process is an
assembly code. Using this assembly code, our program
constructs the indexed table and encrypts the codes. In the
decryption process, the indexed table is used to decrypt the
code.

Table 5. Implementation environment.

Feature Description

Operating system Windows XP Service Pack 3

Language C/C++

Compiler Microsoft Visual C++ 6.0

Cryptographic library Win32 OpenSSL version 0.9.8

CPU Intel Core2Duo CPU E7200

RAM 4 GB

68 Sungkyu Cho et al. ETRI Journal, Volume 33, Number 1, February 2011

Fig. 17. Process of the implemented program.

Disassembler

Code
encryption

Executable file
(‘.exe)

Encrypted
assembly code

Code
decryption

Assembly

Basic block
A

Basic block
B

Basic block
C

Basic block
D

Fig. 18. Disassembled executable file.

:::: Label1001246
inc esi
mov dword ptr [ebp-32], esi

:::: Label100124a
mov al, byte prt [esi]
cmp al, 020h
jbe Label1001246

:::: Label1001254
mov dword ptr [ebp-84], ebx
lea eax, dword ptr [ebp-128]
push eax
call dword ptr [GetStartuplnfoA]
test byte ptr [ebp-84], 01h
movzx eax, word ptr [ebp-80]
jmp Label100127b

:::: Label100126d
inc esi
mov dword ptr [ebp-32], esi
cmp byte ptr [esi], 020h
jbe Label100124a

We referred to PEDasm version 0.33, which is an open source

disassembler. To measure the performance, we select three small
programs which are default executable files in Windows
XP, “systray.exe,” “regedt32.exe,” and “actmovie.exe”.
“Systray.exe” is a background process which displays
information, such as date and time. “Actmovie.exe” is used by
some screensavers and Microsoft applications for video graphics,
and “regedt32.exe” is a process associated with registry scanning.
They are stored in “\$WINDOWS$\system32\”. We use a
stream cipher, RC4 [17], as a cryptographic algorithm to encrypt
and decrypt the code.

At first, the executable file is entered, disassembled, and
divided into basic blocks as shown in Fig. 18. Then, the
program performs table indexing and code encryption using
the divided basic block. The results are shown in Fig. 19.

The result shows that the input program is “systray.exe”. The
string “1414,” which is entered by the user, is hashed as SHA-1

Fig. 19. Result of program.

Fig. 20. Result of the lookup table and re-encryption.

[18] to generate the initial key IK. An executable file
“systray.exe” has 18 blocks, and 8 blocks are invoked by
multiple blocks. Hence, the 8 blocks have PK. Each block and
related information is constructed as a table, and then the
blocks are encrypted according to the table.

The constructed table is refereed to decrypt the code correctly,
and then re-encryption is performed to protect the code from
memory dumping. The results are shown in Fig. 20.

We measure and evaluate the encryption time and decryption
time of three programs. At this time, we exclude external

ETRI Journal, Volume 33, Number 1, February 2011 Sungkyu Cho et al. 69

Table 6. Results of measurement.

Feature Regedt32.exe Actmovie.exe Systray.exe

Original file size (B) 3,584 4,096 3,072

Number of blocks 12 26 18
Number of

multiple paths
7 11 8

Decryption and
re-encryption time (s) 0.0016 0.0032 0.0024

Ct 6.680 6.119 10.985

Cs 1.027 1.674 1.047

libraries such as “.dll” files because they are implemented
externally to the executable file. The result is shown in Table 6.

Table 6 shows programs increased sizes and execution times.
PK and the constructed table make a program’s size larger than
before. Additionally, the execution time is increased due to
table lookups and cryptographic operations. However,
increases of data and execution time are less than in existing
schemes.

V. Conclusion

This paper presented and discussed code encryption schemes
for protecting software against reverse engineering and
modification. Recently, Cappaert proposed a tamper-resistant
code encryption scheme, and Jung proposed a key-chain-based
code encryption scheme. However, Cappaert’s scheme did not
meet the security requirements for code encryption schemes,
and Jung’s scheme had an efficiency problem. Therefore, we
proposed a new code encryption scheme based on an indexed
table to guarantee secure key management and efficiency.

Finally, we implemented our scheme and measured the time
cost and space cost. To improve efficiency, support from the
compiler and operating system is needed [19].

References

[1] Business Software Alliance. Available: http://www.bsa.org
[2] B. Barak et al., “On the (Im)possibility of Obfuscating Programs,”

Advances in Cryptology, LNCS, vol. 2139, 2001, pp.1-18.
[3] C. Collberg and C. Thomborson, “Watermarking, Tamper-

Proofing, and Obfuscation–Tools for Software Protection,” IEEE
Trans. Software Eng., vol. 28, no. 8, 2002, pp. 735-746.

[4] C. Collberg, G. Myles, and A. Huntwork, “Sandmark–A Tool for
Software Protection Research,” IEEE Security and Privacy, vol. 1,
no. 4, 2003, pp. 40-49.

[5] C.S. Collberg, C. Thomborson, and D. Low, “A Taxonomy of
Obfuscating Transformations,” Dept. of Computer Sciences, Univ.

of Auckland, Tech. Report, no. 148, 1997.
[6] E. Eilam, Reversing: Secrets of Reverse Engineering, Wiley

Publishing, Inc., 2005.
[7] J.M. Memon et al., “A Study of Software Protection Techniques,”

Innovations Adv. Techniques Computer Inf. Sci. Engin., 2007, pp.
249-253.

[8] J. Cappaert et al., “Toward Tamper Resistant Code Encryption:
Practice and Experience,” LNCS, vol. 4991, 2008, pp. 86-100.

[9] J. Cappaert et al., “Self-Encrypting Code to Protect Against
Analysis and Tampering,” 1st Benelux Workshop Inf. Syst.
Security, 2006.

[10] D.W Jung, H.S Kim, and J.G. Park, “A Code Block Cipher
Method to Protect Application Programs From Reverse
Engineering,”J. Korea Inst. Inf. Security Cryptology, vol. 18, no.
2, 2008, pp. 85-96 (in Korean).

[11] G. Wroblewski, General Method of Program, Code Obfuscation,
PhD thesis, Wroclaw University of Technology, Institute of
Engineering Cybernetics, 2002.

[12] D. Low, “Protecting Java Code via Code Obfuscation,”
Crossroads, vol. 4, no. 3, 1998, pp. 21-23.

[13] C. Linn and S. Debray, “Obfuscation of Executable Code to
Improve Resistance to Static Disassembly,” ACM Conf.
Computer Commun. Security, 2003, pp. 290-299.

[14] S. Chow et al., “An Approach to the Obfuscation of Control-
Flow of Sequential Computer Programs,” LNCS, vol. 2200, 2001,
pp. 144-155.

[15] Y. Sakabe, M. Soshi, and A. Miyaji, “Java Obfuscation
Approaches to Construct Tamper-Resistant Object-Oriented
Programs,” IPSJ Dig. Courier, vol. 1, 2005, pp. 349-361.

[16] Tao Zhang, Santosh Pande, and Antonio Valverde, “Tamper-
Resistant Whole Program Partitioning,” Proc. Conf. Languages,
Compilers, Tools Embedded Syst., vol. 38, 2003, pp. 209-219.

[17] R. Rivest, The RC4 Encryption Algorithm, RSA Data Security,
Inc., Mar. 1992.

[18] NIST, “Secure Hash Standard,” Fed. Inf. Process. Std., FIPS-
180-1, Apr. 1995.

[19] M.R. Stytz and J.A. Whittaker, “Software Protection: Security’s
Last Stand,” IEEE Security Privacy, vol. 1, no. 1, 2003, pp. 95-98.

Sungkyu Cho received his BS and MS in
electrical and computer engineering from
Sungkyunkwan University, Korea, in 2008 and
2010, respectively. He is currently an assistant
engineer in Samsung Electronics. His research
interests include cryptography, reverse
engineering, and mobile security.

70 Sungkyu Cho et al. ETRI Journal, Volume 33, Number 1, February 2011

Donghwi Shin received his BS in physics from
Sungkyunkwan University, Korea, in 2002, and
his MS in computer science from
Sungkyunkwan University, Korea, in 2008. He
is currently enrolled in a PhD course for
information security in Sungkyunkwan
University. He is a senior researcher at Korea

Internet and Security Agency. His research interests include malware
analysis, reverse engineering, and exploit development.

Heasuk Jo received her BS in computer
engineering from Hansung University, Korea, in
2003, and MS in computer engineering from
Sungkyunkwan University, Korea, in 2005. She
is currently enrolled in a PhD course for electrical
and computer engineering in Sungkyunkwan
University. Her research interests include

cryptography, information security and assurance, and mobile security.

Donghyun Choi received his BS and MS in
electrical and computer engineering from
Sungkyunkwan University, Korea, in 2005 and
2007, respectively. He is currently enrolled in a
PhD course of mobile systems engineering in
Sungkyunkwan University. His research
interests include cryptography, SCADA, mobile

security, and DRM.

Dongho Won received his BE, ME, and PhD
from Sungkyunkwan University in 1976, 1978,
and 1988, respectively. After working at ETRI
from 1978 to 1980, he joined Sungkyunkwan
University in 1982, where he is currently a
professor in the School of Information and
Communication Engineering. His interests are

in cryptology and information security. In 2002, he was the president of
the Korea Institute of Information Security and Cryptology.

Seungjoo Kim received the BS, MS, and PhD
in information engineering from
Sungkyunkwan University, Korea, in 1994,
1996, and 1999, respectively. Prior to joining
the faculty at Sungkyunkwan University in
2004, he was the director of the cryptographic
technology team and the IT security evaluation

team of Korea Internet and Security Agency for five years. Currently,
he is an associate professor of the School of Information and
Communication Engineering at Sungkyunkwan University. His
research interests include cryptography, information security,
information assurance, and digital forensics.

