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Software is completely exposed to an attacker after it is 
distributed because reverse engineering is widely known. 
To protect software, techniques against reverse 
engineering are necessary. A code encryption scheme is 
one of the techniques. A code encryption scheme encrypts 
the binary executable code. Key management is the most 
important part of the code encryption scheme. However, 
previous schemes had problems with key management. In 
an effort to solve these problems in this paper, we survey 
the previous code encryption schemes and then propose a 
new code encryption scheme based on an indexed table. 
Our scheme provides secure and efficient key 
management for code encryption. 
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I. Introduction 

The Business Software Alliance estimated that the monetary 
value of copyright infringement was US $53 billion in 2008 [1]. 
This was up US $5.1 billion from 2007. The major reason for 
copyright infringement is that software is completely exposed 
to an attacker after it is distributed since reverse engineering is 
widely known [2]-[5]. 

Therefore, to protect software, techniques against reverse 
engineering are necessary. A code encryption scheme is one of 
the techniques. A code encryption scheme encrypts the binary 
executable code. This is accomplished by encrypting the 
program at some point after it is compiled [6], [7]. However, 
skillful reverse engineers can easily find the secret key. To 
solve this problem, a code encryption scheme needs secure key 
management. 

Cappaert [8], [9] and Jung [10] have proposed code 
encryption schemes that generate a secret key with the related 
information of a binary code at runtime. However, previous 
schemes have problems with key management. First, 
Cappaert’s scheme cannot generate the correct secret key. If a 
secret key is not generated properly in a code encryption 
scheme, it may lead to program crashes or other unintended 
behavior. Second, the size of an executable file is increased 
considerably in Jung’s scheme; this may lead to an efficiency 
problem. 

To solve the problems, we review the previously proposed 
code encryption schemes, and then we propose a new code 
encryption scheme based on an indexed table included in this 
paper. Our scheme generates the correct key in any software 
which has various structures and with performance advantage.  

The remainder of this paper is structured as follows. In 
section II, we describe the existing code encryption schemes. In 
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section III, we propose our encryption scheme based on an 
indexed table. We compare previous schemes in section IV. 
Finally, our conclusions and a suggestion of possible future 
work are in section V. 

II. Related work 

Code obfuscation and encryption are used to protect 
software [11]-[13]. However, code obfuscation merely makes it 
time-consuming, but not impossible, to reverse a program. 
Therefore, we concentrated on code encryption which can 
protect the software from reverse engineering. We searched for 
schemes that are related to code encryption and found two 
applicable schemes. In this section, we briefly review both 
Cappaert’s and Jung’s schemes.  

1. Cappaert’s Scheme 

Cappaert proposed a partial encryption scheme based on a 
code encryption scheme [8], [9]. To apply the partial 
encryption scheme, binary codes are divided into small parts 
and encrypted. The encrypted binary codes are decrypted at 
runtime by users. In this way, the partial encryption overcomes 
the weakness of revealing all of the binary code at once 
because only the necessary parts of the code are decrypted at 
runtime. Cappaert’s scheme is shown in Fig 1.   

As shown in Fig. 1, the scheme relies on function encryption 
and code dependency. For example, if a calc function invokes a 
sum function, the secret key which is used to encrypt a sum 
function is the calc function’s own binary code. The sum 
function is decrypted at runtime, and then the calc function is 

 

 

int calc(int x, int y) 
{ 

int ret; 
ret=sum(x,y); 
return ret; 

} 

#include<stdio.h> 
int calc(int, int); 
int sum(int, int); 
int main(void) 
{ 

int a=0; 
int b=0; 
int c; 
c=calc(a,b); 
return 0; 

} 

Fig. 1. Example of Cappaert’s code encryption scheme. 
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Fig. 2. Problem of key generation. 
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decrypted, which invokes a sum function. When the sum 
function completes the work, it is encrypted again and stored in 
the memory.  

In this scheme, all functions decrypt or encrypt another 
function using their own code as a key material. This ensures 
protection against tampering. If an attacker attempts to tamper 
with the protected program execution, the program outputs an 
incorrect binary code. Consequently, the binary code will cause 
incorrect execution and undesired behavior.  

Cappaert’s scheme protects its information using code 
encryption, but it does not perform correctly when a function is 
invoked by multiple functions. We assume that there are 
functions (A, B, C, and D) in the program, as shown in Fig. 2.  

According to the scheme, the secret key of function D should 
be determined from B or C, but Cappaert’s scheme cannot 
determine which secret key is used. Cappaert’s scheme has no 
solution to the problem of determining the secret key. For this 
reason, Cappaert’s scheme can only be applied to software that 
has a single path and cannot be applied to generic software that 
has multiple paths. 

Cappaert proposed an improved scheme two years later [8]. 
It is similar to the original scheme, but it has a few 
modifications. The original scheme, which was proposed in 
2006, uses the caller’s own binary code as the secret key, but 
the improved scheme, which was proposed in 2008, used the 
caller’s own hash value of the binary code as the secret key. 
This can provide tamper-resistance, but key generation and 
management problems are still present. 

2. Jung’s Scheme 

Jung and others proposed a code block encryption scheme to 
protect software using a key chain. Jung’s scheme uses a unit 
block, that is, a fixed-size block, rather than a basic block, 
which is a variable-size block. Basic blocks refer to the parts of 
codes that are divided by control transformation operations, 
such as “jump” and “branch” commands, in assembly code [8], 
[9]. 
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Fig. 3. Jung’s code encryption scheme. 
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Fig. 4. Flow of the example program. 
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Fig. 5. Key chain in Jung’s scheme [10]. 
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Jung’s scheme is very similar to Cappaert’s scheme. As 
shown in Fig. 3, this scheme encrypts the N-th block using the 
key that was created from the (N–1)th block.  

Jung’s scheme tries to solve the problem of Cappaert’s 
scheme. If a block is invoked by more than two preceding 
blocks, the invoked block is duplicated. We assume the flow of 
an example program as shown in Fig. 4. 

As shown in Fig. 4, the secret key of block D, which is 
invoked by multiple blocks, should be chosen as block B or 
block C. According to the Jung scheme, a key chain is 
constructed as shown in Fig 5.  

At this time, by duplicating the block D on another path, D' 
is created. The secret key of E is determined by block D or 
block D'; block D and block D' are identical. The secret key of 
block D is determined by block B, and the secret key of block 
D' is determined by block C. Therefore, the secret key of E is 
determined correctly even though the block is invoked by more 
than two blocks. A key chain can be achieved in this way, and 
then the encrypted code is stored as an executable file.  

Jung’s scheme solves the problem of determining the secret  

 

Fig. 6. Novelty of our scheme. 
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key of a block which is invoked by more than two preceding 
blocks. However, it has a disadvantage in aspect of the code 
size. According to the scheme, the executable file size is 
increased not only in procedure of converting a basic block to a 
unit block, but also in the duplicating procedure. In addition, if 
the numbers of preceding blocks are increased, the number of 
duplicated blocks is also increased equivalently. 

To solve this problem, we propose a new scheme based on 
an indexed table in this paper. In our scheme (assume that the 
flow of an example program is as shown in Fig. 4), block B 
and C can decrypt block D without duplicating block D since 
block B and C can acquire the key B through the indexed table, 
as shown in Fig. 6.  

III. Proposed Scheme 

We propose a code encryption scheme based on an indexed 
table to protect software. The indexed table can solve the 
problem of multiple paths. In addition, it solves such problems 
as loops, recursions, and multiple calls.  

1. Notations and Requirements 

The notations in Table 1 are used throughout this paper. IK is 
the initial key that protects both the indexed table and the 
random number. The random number encrypts basic blocks 
that are invoked by multiple blocks, and the IK encrypts the 
random number. Providing and managing the IK depends on 
the application, and the IK can be stored in an external devices, 
such as an external hard drive or a trusted platform module. 
Hence, we assume that IK was distributed offline and stored 
securely. A random number is used to encrypt a multiple called 
block, and the random number is encrypted with IK. PK 
denotes the encrypted random number using the key IK, that is, 
PK=EncIK(r). The PK is stored in the data section of 
executable binary code. Symmetric encryption and decryption 
with secret key K are denoted by EncK (·) and DecK (·), 
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Table 1. Notation. 

Notation Description 

IK Initial key 

PK Protected key 

EncK(·) Symmetric encryption with key K 

DecK(·) Symmetric decryption with key K 

H(·) One-way hash function 

r Random number 

A to Z Basic blocks in binary code 

Pi Basic block of program in plain form 

Ci Basic block of program in encrypted form 

 

 
respectively. However, we will not discuss the encryption or 
decryption algorithm itself because it is outside of the scope of 
this paper.  

A few requirements are necessary for the secure code 
encryption scheme: 

• Confidentiality. The original binary code should be 
protected from static analysis by maintaining confidentiality. To 
protect a binary code from a dynamic analysis, which analyzes 
data flow and control transformation, a minimal number of 
code blocks should be present in the memory. As long as the 
code remains encrypted in memory, the program can be 
protected from static and dynamic analysis [8]. 

• Memory dump prevention. If a single routine encrypts a 
whole program, the decryption routine decrypts the body and 
sets up the starting point of the body as the entry point. At this 
time, it can be easily cracked by a memory dump. Therefore, 
only a small part of the program should be decrypted, while the 
other parts of the program remain in encrypted form.  

• Correct key chain. When a code encryption is applied to a 
program, the correct key chain is required. If it does not have a 
correct key chain for the multiple paths, the system can crash or 
engage in an undesired execution.  

• Tamper resistance. To protect from tampering, and 
maintain integrity [8], [15], [16], we want the following 
properties:  

- In the encryption process, a one-bit change in a basic block 
A affects all following ciphertext blocks. 

- In the decryption process, if one or more bits are modified 
in encrypted basic block B ', the result of decryption should 
be changed by one or more bits. 

2. Code Encryption 

All of the steps of the code encryption algorithm are shown  

 

Fig. 7. Pseudo-code to encrypt executable file. 

Procedure encryption() 
 

1. Compile();  // compile the source code to generate object or 
executable file 

2.  
3. entrypoint ← Find_EntryPoint();  // store an address of  

entry point 
4. currentAddress = entrypoint;     // initialization 
5. nextAddress = 0; 
6. 
7. ConstructTable()  // this procedure is described in Fig. 10.
8. 
9. nextAddress = Find_next(entrypoint);  // find an address of 

next block in current block
10. Encrypt(IK, entrypoint);  // encrypt first block 
11.  
12. while(File pointer is not end of file) 
13. { 
14.     if(SearchTable(nextAddress)) // if next block’s flag in 

the indexed table indicates 1
15.     { 
16.          random = GenerateRandom(); // generate random 

number 
17.          Encrypt(random, nextAddress); // Encrypt with the 

random number
18.        Encrypt(random, IK);  // Encrypt the random  

number with the IK 
19.      } 
20.      else                             // next block’s flag indicates 0 

21.         Encrypt(random, currentAddress);  // Encrypt with 
the current block

22. } 

 
 

Fig. 8. Encryption process flow chart. 
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Fig. 10. Key chain in our scheme. 
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in Fig. 7. These code encryption steps are described in the flow 
chart of Fig. 8. 

Step 1 is the source code compiling process. After this step, 
the source code is compiled and outputs a binary image. 

Step 2 is construction of the indexed table. It is the most 
important procedure of our scheme. We describe the details of 
step 2 in Fig. 9. 

Lastly, in step 3, the basic blocks are encrypted. This is 

1( ) ( ),
ii H P iC Enc P
−

= where 0( ) .H P IK=  At this time, i is  

 

Fig. 11. C code and its assembly code. 
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the number of blocks in the indexed table. If a flag is not zero, 
the block is encrypted by a random number. IK encrypts the 
random number which is then stored in an executable image. 
This encryption process is needed because if the random 
number is exposed, the blocks can be decrypted by the random 
number and analyzed by the attacker. 

The indexed table is used to make the correct key chain. The 
table construction procedure is as follows. First, store the 
current address of the basic block, and investigate the “jump” 
or “branch” command in the basic block by moving the pointer. 
The commands contain a block’s address, which will be 
executed next. If the next address refers to the current address 
of the basic block, this indicates a loop or recursion. When a 
loop or a recursion occurs due to the “cmp” command with the 
number of calls, the number of calls is marked in the table. 
Likewise, if a current address of a block is stored in the table 
already, this indicates multiple calls. The PK is generated at this 
time and stored in the binary image in a data section.  

As shown in Fig. 10, a basic block D is invoked by multiple 
blocks B, C, and F. The secret key of B is the hash value of 
block A, and the secret key of block C is the same. F is not 
invoked by block A directly, but it invokes the basic block D. 
At this time, random number r is generated for the secret key of 
D, and then it is encrypted with IK. The result of the encryption 
is a PK. The PK is stored in executable images. Generic 
operating systems, such as Windows or Linux, store variables 
in the data section of an executable image. Therefore, the PK is 
stored in the data section of an executable image. 

The indexed table contains the number of iterations and 
recursions. If this is not considered, a basic block which has 
loops or/and recursions will be decrypted multiple times. 
Therefore, by marking the number of loops and recursions in 
the table, we can prevent this problem. When a basic block has 
been called, the number of calls is reduced by one, and then if 
the number of calls became zero, the block should be re-
encrypted from memory to protect against a memory dump. 
For example, in the case of loop, the source code is written in 
the C language, and its assembly code is shown in Fig. 11. 

The second operand of the “cmp” command is 0Ah. It 
indicates the block “loc_401006” will be carried out 10 
(=0x0A) times, and that is the number of loops or recursions. 

In conclusion, we can summarize the algorithm of step 2 as  
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Fig. 12. Pseudo-code to construct indexed table. 

Procedure ConstructTable() 
 

1.  entrypoint ← Find_EntryPoint(); // store an address  
of entry point 

2.  currentPointer ← entrypoint;  
3.  nextPointer ← currentPointer++; 
4.  index ← 0; 
5.                

6.  while(File pointer is not end of file) { 
7.    if(Current_opcode == jump or Current_opcode == branch){
8.    // branch or jump command is an unit of block 
9.        nextAddress ← operand;                        

10.         // store an address of current address 
11.        if(currentAddress == nextAddress) { 
12.                 // loop, or recursion 
13.           Tuple[index].Address ← currentAddress; 
14.           Tuple[index].Size ← sizeofBlock; 
15.           Tuple[index].Cnt ← prev_operand_2; 
16.           Tuple[index].flag ← 0; 
17.           //index, entry point address, size, number of calling, 

and no protected key 
18.           StoreAttribute(Tuple[index]); 
19.        } 
20.        else{ 
21.            if(FindAddress(Tuple[index].currentAddress) {
22.             // repeated calling 
23.                GenerateProtectedKey(); 
24.                StoretoDatasection(); 
25.                Tuple[index].flag ← 1 
26.             } 
27.        }                                     
28.     } 
29.    nextBlock ← Get_NextBlock(currentAddress);  
30.     // Get next block’s address 
31.     currentAddress ← nextAddress; 
32.     Sort(Tuple);  

33.     Compute_blocksize(Tuple); 
34.     CheckIterations(); 
35.     index++; 
36.  } 

  
 
the pseudo-code in Fig. 12. In addition, we can show an 
example of constructing the indexed table in Fig. 13. 

The example code is composed of five basic blocks. The 
basic blocks are divided by “jump” or “branch” commands. At 
first, initialization is performed to construct the indexed table. 
0x0040103E is set as the starting point of the program. After 
this, investigate the commands to find the “jump” or “branch.” 
If the command is “jump” or “branch,” store the operand of the 
command in the table because it becomes the first address of 
another block. In this example, 0x0040105A is stored in the 
table because of the command “jne 0x0040105A,” which is 
at0x0040104F. The next address of the command becomes the 
first address of another block. So, 0x00401051 is stored in the 
indexed table. In this way, 0x0040106C and 0x00401060 are 
stored in order. At 0x0040106A, the command “jmp 

 

 

 

Basic
block 

A 

B

C

D

E

Fig. 13. Example of constructing indexed table. 

0040103E
00401043
00401045
00401048
0040104F

Address 
(offset) 

Block 
size 

Number 
of calls Flag

0x0040103E 19 1 0
0x00401051 9 2 1
0x0040105A 6 2 1
0x00401060 12 1 0
0x0040106C 8 2 1

···
 

mov
idiv
mov
cmp
jne

ecx, 64h 
eax, ecx 
dword ptr [ebp-0Ch], edx 
dword ptr [ebp-10h], 8 
0040105a 

00401051
00401054
00401057

mov
add
mov

edx, dword ptr [ebp-10h] 
edx, 1 
dword ptr [ebp-10h], edx 

0040105A
0040105E

cmp
jge

dword ptr [ebp-10h], 5 
0040106c 

00401060
00401063
00401067
0040106A

mov
imul
mov
jmp

eax, dword ptr [ebp-4] 
eax, dword ptr [ebp-10h] 
dword ptr [ebp-4], eax 
00401051 

0040106C
0040106F
00401072

mov
cmp
jle 

ecx, dword ptr [ebp-4] 
ecx, dword ptr [ebp-8] 
0040108a 

 
 

 

Fig. 14. Pseudo-code to decrypt executable file. 

Procedure Decryption() 

1. entrypoint ← Find_EntryPoint(); // store an address of  
entry point 

2. currentAddress = entrypoint;     // initialization 
3. nextAddress = 0; 
4. 
5. nextAddress = Find_next(entrypoint);  // find an address 

of next block in current block
6. Decrypt(IK, entrypoint);  // decrypt first block 
7. Execute(currentAddress); // execute the first block 
8.  
9. while(File pointer is not end of file) 

10. { 
11.    if(LookupTableTable(nextAddress)) // if next block’s flag 

in the indexed table indicates 1
12.    { 
13.      random = ExtractRandomNumber(nextAddress, IK); 
14.        // extract the random number with IK 
15.      Decrypt(random, nextAddress); // decrypt with the  

random number 
16.    } 
17.    else               // next block’s flag indicates 0  
18.      Decrypt(random, currentAddress);  // encrypt with the 

current block 
19.  
20. Execute(nextAddress); // execute the next block 
21. ReEncrypt(currentAddress); 
22.  
23. } 

 
 
0x00401051” is identified. 0x00401051 has been stored 
already, which indicates that there are multiple paths regarding 
the address 0x00401051. Hence, the block’s information 
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Fig. 15. Decryption process flow chart. 
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Table 2. Security comparisons between existing schemes and ours.

Security 
requirements 

Cappaert’s 
scheme 

Jung’s 
scheme 

Proposed 
scheme 

Confidentiality O O O 
Memory dumping 

prevention O O O 

Correct 
key chain 

X O O 

Tamper resistance O O O 

 

should be updated, and the random number should be 
generated as well. In this way, all the blocks can be identified. 

3. Code Decryption 

We can summarize the algorithm of all of the steps for the 
decryption process as the pseudo-code in Fig. 14. 

The algorithm is divided into four steps: the lookup step, 
decryption step, execution step, and re-encryption step. These 
code decryption steps are described in the flow chart of Fig. 15. 

At the beginning of the program’s execution, the indexed table 
should refer to the entry point of the program, and then the 
encrypted block Ci should be decrypted into executable code Pi. 
Decrypted code Pi is executed after the block is decrypted using  

Table 3. Comparisons of increased size of executable file when block 
has n paths. 

 Jung’s scheme Proposed scheme 
Increased size of 
executable file (n–1)·k l 

 

the preceding block’s hash value. If a Pi-1 has tampered into P'i-1, 
the secret key will be H(Pi-1) ≠ H(P'i-1), so Pi cannot be 
decrypted properly. The indexed table contains the flag, which 
indicates whether the block uses random numbers or not. If the 
flag is 1, the encrypted block is decrypted by a random number. 
When the decrypted code completes the work, it is encrypted 
again and stored in the memory. 

IV. Analysis 

This section begins with security analysis of the proposed 
scheme. Then, we show performance analysis and 
comparisons to clarify the advantage of our scheme. Lastly, we 
present the result of the experiment. 

1. Security Analysis 

To improve security, we adopted the indexed table based on 
a code encryption scheme. Cappaert’s scheme does not meet 
the previously discussed security requirements. Our scheme 
meets the security requirements as described in Table 2.  

The original binary code should be protected from static 
analysis and dynamic analysis by remaining confidential. Our 
scheme divides the program into basic blocks and then 
encrypts these basic blocks. It protects the confidentiality of the 
software. Our scheme achieves memory dumping prevention 
because our scheme decrypts only small parts of the code, so 
codes are not revealed all at once in the memory. The key chain 
is accomplished by using a random number. When a basic 
block invokes another block that is invoked by multiple blocks, 
a random number is used to decrypt the block. Cappaert’s 
scheme did not satisfy the correct key chain requirement as 
previously discussed in section II. Tampering with a block is 
detected because the hash value of Pi-1 was used as the secret 
key. If an attacker tampers with a plain or encrypted block, a 
corrupted code is generated at the later stage and thus the 
system will most likely crash due to an illegal instruction. 

2. Performance Analysis 

We analyze the efficiency when multiple paths occur. 
Cappaert’s scheme did not consider multiple paths. Jung’s  
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Fig. 16. Common target program. 
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Table 4. Performance comparisons between existing schemes and
our scheme. 

Feature 
Cappaert’s 

scheme 
Jung’s 
scheme 

Proposed 
scheme 

Original file size (B) 95 95 95 

Number of blocks  5 5 5 
Number of 

multiple paths  
1 1 1 

Decryption and  
re-encryption time (s) 

- 0.0000857 0.0000446

Ct - 4.28 2.23 

Cs - 1.02 0.84 

 

scheme considered multiple paths, but it created additional 
overhead whenever it faced multiple paths because the invoked 
block was duplicated. We assume that there are n multiple 
paths. For example, in Fig. 10, D has 3 paths, thus n is 3. 
Additionally, we assume that k is a unit block’s size, and l is the 
key size, which is originally a random number. At this time, 
when a block has n paths, the increased size of the executable 
file is as in Table 3.  

The number of paths of a block n is always larger than 2. 
Thus, if k is larger than or equal to l, the increasing size of the 
executable file of Jung’s scheme is always larger than in our 
scheme. Jung specified the k in his paper, and it was usually  
16 B, 32 B, or 64 B. Consequently, if the size of a random 
number is specified as 16 B, the size of the executable file in 
Jung’s scheme is always larger than in our scheme. If a 
program has additional multiple paths, the size differential 
between the schemes will increase. 

We next compare the performance of our scheme with other 
schemes. Due to the fact that all of the schemes are 
implemented in different operating systems and test 
applications by authors of previous schemes, we assume a 
common target program as shown in Fig. 16. Although the 
structure of the program is very simple, it is used frequently in 
general software. The program has a total of 95 B and a  

0.00002 s execution time. It is constructed with 5 blocks. In 
addition, it has one multiple path.  

To compare, we use a method that is presented in [4]. 
Suppose that we have a program P and its modified version P'. 
Then, we define the time cost Ct and the space cost Cs as 

t

s

( ')( , ') ,
( )
( ')( , ') ,
( )

T PC P P
T P
S PC P P
S P

=

=
 

where T(X) is the execution time of program X, and S(X) is its 
size. The result of the performance is shown in Table 4.  

Cappaert’s scheme cannot execute the common target 
program since the program has one multiple path. In Jung’s 
scheme, the executable file size and execution time are 
increased since the scheme needs to convert a basic block to 
unit blocks and then duplicate the unit blocks. In this example 
program, 95 B codes are increased by 192 B, thus space cost Cs 
value is 1.02, and time cost Ct value is 4.28. In contrast with 
existing schemes, our scheme has 80 B of additional data, the 
space cost Cs value is 0.84, and the time cost Ct value is 2.23. Cs 
value and Ct value show that our scheme has better performance 
over Cappaert’s scheme. In practice, the advantage of storage 
and time cost is useful in real time systems or in embedded 
systems which have constraints of performance.  

3. Experiment 

Next, we show the implementation and our evaluation of the  
proposed scheme. We implemented our scheme in the 
environment described in Table 5. 

The process of the implemented program is shown in Fig. 17. 
Initially, an executable file is input into our program, and then 
the file is disassembled. The result of the process is an 
assembly code. Using this assembly code, our program 
constructs the indexed table and encrypts the codes. In the 
decryption process, the indexed table is used to decrypt the 
code. 
 

Table 5. Implementation environment. 

Feature Description 

Operating system Windows XP Service Pack 3 

Language C/C++ 

Compiler Microsoft Visual C++ 6.0 

Cryptographic library Win32 OpenSSL version 0.9.8 

CPU Intel Core2Duo CPU E7200 

RAM 4 GB 
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Fig. 17. Process of the implemented program. 
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Fig. 18. Disassembled executable file. 

:::: Label1001246 
inc esi 
mov dword ptr [ebp-32], esi 

:::: Label100124a 
mov al, byte prt [esi] 
cmp al, 020h 
jbe Label1001246 

:::: Label1001254 
mov dword ptr [ebp-84], ebx 
lea eax, dword ptr [ebp-128] 
push eax 
call dword ptr [GetStartuplnfoA] 
test byte ptr [ebp-84], 01h 
movzx eax, word ptr [ebp-80] 
jmp Label100127b 

:::: Label100126d 
inc esi 
mov dword ptr [ebp-32], esi 
cmp byte ptr [esi], 020h 
jbe Label100124a 

 
We referred to PEDasm version 0.33, which is an open source 

disassembler. To measure the performance, we select three small 
programs which are default executable files in Windows     
XP, “systray.exe,” “regedt32.exe,” and “actmovie.exe”. 
“Systray.exe” is a background process which displays 
information, such as date and time. “Actmovie.exe” is used by 
some screensavers and Microsoft applications for video graphics, 
and “regedt32.exe” is a process associated with registry scanning. 
They are stored in “\$WINDOWS$\system32\”. We use a 
stream cipher, RC4 [17], as a cryptographic algorithm to encrypt 
and decrypt the code. 

At first, the executable file is entered, disassembled, and 
divided into basic blocks as shown in Fig. 18. Then, the 
program performs table indexing and code encryption using 
the divided basic block. The results are shown in Fig. 19. 

The result shows that the input program is “systray.exe”. The 
string “1414,” which is entered by the user, is hashed as SHA-1 

 

Fig. 19. Result of program.  
 

 

Fig. 20. Result of the lookup table and re-encryption. 
 

[18] to generate the initial key IK. An executable file 
“systray.exe” has 18 blocks, and 8 blocks are invoked by 
multiple blocks. Hence, the 8 blocks have PK. Each block and 
related information is constructed as a table, and then the 
blocks are encrypted according to the table. 

The constructed table is refereed to decrypt the code correctly, 
and then re-encryption is performed to protect the code from 
memory dumping. The results are shown in Fig. 20. 

We measure and evaluate the encryption time and decryption 
time of three programs. At this time, we exclude external 
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Table 6. Results of measurement. 

Feature Regedt32.exe Actmovie.exe Systray.exe

Original file size (B) 3,584 4,096 3,072 

Number of blocks 12 26 18 
Number of 

multiple paths 
7 11 8 

Decryption and     
re-encryption time (s) 0.0016 0.0032 0.0024 

Ct 6.680 6.119 10.985 

Cs 1.027 1.674 1.047 

 

libraries such as “.dll” files because they are implemented 
externally to the executable file. The result is shown in Table 6.  

Table 6 shows programs increased sizes and execution times. 
PK and the constructed table make a program’s size larger than 
before. Additionally, the execution time is increased due to 
table lookups and cryptographic operations. However, 
increases of data and execution time are less than in existing 
schemes. 

V. Conclusion  

This paper presented and discussed code encryption schemes 
for protecting software against reverse engineering and 
modification. Recently, Cappaert proposed a tamper-resistant 
code encryption scheme, and Jung proposed a key-chain-based 
code encryption scheme. However, Cappaert’s scheme did not 
meet the security requirements for code encryption schemes, 
and Jung’s scheme had an efficiency problem. Therefore, we 
proposed a new code encryption scheme based on an indexed 
table to guarantee secure key management and efficiency.  

Finally, we implemented our scheme and measured the time 
cost and space cost. To improve efficiency, support from the 
compiler and operating system is needed [19]. 
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