
18 Ji Zhang et al. © 2011 ETRI Journal, Volume 33, Number 1, February 2011

The necessity for services of emergency communication
systems to be uninterrupted and reliable has brought
forward strict requirements for express software upgrades
of base stations. Based on reconfigurability technology,
this paper presents a protocol reconfiguration scheme for
emergency communication base stations. By introducing
the concept of ‘local safe state,’ the proposed scheme could
make the updating and replacement of the protocol
software flexible and maintain interactions during the
updating procedure to achieve seamless system upgrades.
Further, taking TETRA protocol stack and VxWorks
operating system as an example, specific processes and
realization methods of reconfiguration are proposed in
this paper, along with the measurements of the factors
impacting on the system performance. Simulation results
show that, compared with traditional technology, the
method proposed significantly improves the system
efficiency and does not interrupt system services.

Keywords: Reconfiguration, emergency communication,
safe state, reconfiguration management plane, component,
VxWorks.

Manuscript received Jan. 26, 2010; revised Aug. 12, 2010; accepted Aug. 26, 2010.
Ji Zhang (phone: +86 10 68918326, email: izpursuer@gmail.com), Hai Li (corresponding

author, email: haili@bit.edu.cn), and Shujuan Hou (email: shujuanhou@bit.edu.cn) are with
the School of Electronics and Information, Beijing Institute of Technology, Beijing, China.

doi:10.4218/etrij.11.1510.0008

I. Introduction

The emergency mobile communication system not only
provides all the features of common mobile communication
systems, but also provides the function of command and
dispatching, so it has been widely used in many fields, such as
railways, airports, harbors, and gas fields. In order to respond to
emergency events, the emergency mobile communication
system has strict requirements for uninterrupted serving.
However, when the maintenance of a base station (BS) of an
emergency communication system is required, including
updates or replacements of the protocol software, the BS is
forced to stop the activities of all the components until the
system is updated and rebooted. During this period, responses
to new service requests are impossible, and the current traffic
stream has to be interrupted. So, the reliability of the system is
undoubtedly reduced.

At present, many researchers focus on reconfiguration
technology in order to implement protocol software
maintenance, such as changing the network of a device due to
its mobility, changing routing algorithms of switches, and
adding or changing the security module in protocol stacks [1].
One of the important aspects for protocol reconfiguration is
the decomposition of protocol functionality into components
able to be reassembled dynamically [2]. Several designs of
protocol component framework have been proposed. In [3], a
framework has been proposed for creating, removing, and
replacing protocol modules at runtime. The framework
preserves the module state as a data structure to manage the
existing connections. When reaching a safe reconfiguration
point, the whole system will be locked until the
reconfiguration is finished. The DiPS framework [4] aims at
the development of industrial protocol stacks from some

Flexible Protocol Reconfiguration for
Emergency Communication Systems

Ji Zhang, Hai Li, and Shujuan Hou

ETRI Journal, Volume 33, Number 1, February 2011 Ji Zhang et al. 19

components which mainly concentrates on how to describe
protocol building blocks and external requirements and how
to build a stack from these descriptions. However, the
performance issues are not mentioned. A UML profile for
protocol components and protocol reconfiguration is
proposed in [5], but only the structural design is provided.
Niamanesh and Jalili [6] proposed the dynamic-
reconfigurable architecture for a protocol stack which is a
software framework for the dynamic reconfiguration of two
communicating protocol stacks with a distributed algorithm,
but during the updating procedure, no interactions between
two communicating stacks are allowed. The adaptive
multilevel code update protocol [7] enables energy-efficient
code updates via support for multilevel protocols, such as
full-image, module-level, function-level, and instruction-level.
It adaptively selects a protocol which meets the deadline of
applications and, based on a cost analysis of several protocols,
consumes less energy. A reference model for a multimode
protocol [8] is based on the idea of identification of
commonalities between multiple envisaged modes and a
separation of the common and the mode-specific parts of the
protocol, incorporating the ideas of functional partitioning
and reconfiguration of layers to achieve both horizontal and
vertical convergence between multiple modes. Two more
practical prototypes of switching between different radio
access technologies using protocol reconfiguration are given
in [9] and [10], but the technologies of these papers are more
suitable for altering the whole software, not updating partial
modules.

In all of the above methods, the system will be frozen in a
global safe state in order to update the software. When the
system enters the safe state, no interactions between mobile
stations (MSs) and BSs are allowed. So, these methods will
inevitably result in a long period of service interruption which
is intolerable to emergency communication systems. In order
to overcome the shortcomings of these methods, this paper
presents a component-based dynamic reconfiguration method
for uninterrupted protocol software maintenance. We
recommend that each component has its own safe state, and
when a component is updated, other unchanged components
will maintain their interactions in their local safe state.

The rest of this paper is organized as follows. Section II
describes the protocol stack model and the proposed protocol
reconfiguration method. Section III introduces an
implementation of a reconfigurable terrestrial trunked radio
(TETRA) protocol stack based on VxWorks platform.
Section IV analyses the impact of the reconfiguration process
over the system performance through the experimental results.
The last section presents our conclusion and intentions for
future work.

II. Protocol Reconfiguration Method

1. Component-Based Protocol Stack Model

The component-based design is one of the key enabling
technologies for designing reconfigurable software [5]. The
reconfigurable protocol stack can be divided into a public
framework and several functional components. The public
framework provides the basic functions of the protocol stack,
which cannot be configured at runtime. The functional
components, which support dynamic reconfiguration, are
extracted from the protocol stack to form a series of
independent modules according to specific functions. All of the
functional components are installed inside the public
framework to realize the whole functionality of a specified
protocol, guaranteeing the new component could be configured
in a proper way to achieve dynamic reconfiguration.

After the definition of the protocol component, it is necessary
to build the reconfiguration management plane (RMP) to
manage the corresponding functional entities during
reconfiguration. RMP could implement the uninstallation and
reconfiguration of functional components as well as the
extraction and recovery of the system’s running status. RMP is
the platform proposed to embody the functions and interfaces
enabling reconfiguration, which provides layer abstractions to
applications and services on one hand, and to terminal
equipment and network devices on the other [11], [12].

Figure 1 shows the structure of the protocol stack with RMP.
The reconfiguration procedure will be completed under the
control of RMP.

2. RMP

The functional entities of RMP consist of the context
management (CM), policy provision (PP), software download
management (SDM), and reconfiguration management (RM).
The function of each module is described as follows:

Fig. 1. Protocol stack model with RMP.

Component

RMP
Reconfiguration

management

Context
management

Software
download

management

Public frame of protocol
layer N+1

Component

Public frame of protocol
layer of N

ComponentComponent

Component

Policy
provision

Component

20 Ji Zhang et al. ETRI Journal, Volume 33, Number 1, February 2011

CM. This module monitors and updates the contextual
information of a running system, including service status and
other information related to resources which will be used for
the establishment of reconfiguration strategy as well as the state
restoration after reconfiguration. In addition, this entity will
maintain the local component metadata, expressing and
circulating reconfigurable device capabilities, and semantic
properties of reconfigurable protocol stacks [13], [14], which is
used to verify the validity of a component.

PP. This module verifies the validity of the downloaded
component by using the information offered by the CM
module and forms the reconfiguration policy. The
reconfiguration policy determines which services should be
suspended and which system status should be saved during
reconfiguration and informs the RM module about the services
and interfaces provided by the downloaded components. The
system will finish the reconfiguration process in terms of the
policy formed by this entity.

SDM. This module downloads and verifies the integrity of
the component. After that, the component will be stored in the
local file system.

RM. This module monitors the reconfiguration command
from core network and manages the entire process of
reconfiguration according to the policy made by the PP module
as well as coordinates the normal signaling and traffic stream
during reconfiguration.

RMP is outside of the functional entities of the protocol stack,
but the reconfiguration support function exists in all protocol
sublayers. By communicating with the functional components,
RMP could obtain the current system running state, constitute
the reconfiguration policy, and avoid system restart so as to
realize the smooth transition of service after components
upgrade.

3. Local Safe State with Interactions

Communicating components should be frozen in a safe state,
or suspending state [15], before updating. A safe state for a
reconfiguration has been defined as a state that has no
interaction with the other components [6]. However, for an
emergency communication system, the components in a BS
cannot interact with an MS in the safe state so the MS cannot
receive enough downlink PDUs in a term. As a result, the MS
will think the BS cannot be reached and then initialize cell
reselection so the link between the MS and the BS will be
broken even when the signal is still strong enough. The BS
therefore needs to transmit some PDUs to maintain the link in
the safe state.

The concept of a local safe state is proposed in this paper.
When a component is updated, RM will send a freeze message

Fig. 2. Layered components.

Component C

Component B

Component A

Fig. 3. Data source checking.

Send message to component E

Get the data from component E

Wait

In the safe state?

N

Use default settings

Y

to all associated components with a parameter indicating which
component will be updated. The components receiving the
freeze message will enter their own local safe state. Each
component can have different behavior in a local safe state.

Next, two common scenarios are used to explain the
behavior design of local safe state.

Scenario 1. Three components are layered as in Fig. 2. If
component C is updating, the interactions between components
A and B will still be executed just like normal, and all the
messages sent to component C should be buffered until the
update of the component C is done.

Scenario 2. Component D will retrieve data from
component E, but if component E is missing, default settings
can also be used by component D. In this scenario, component
D can choose the proper data source according to the current
state, as depicted in Fig. 3.

When reconfiguration ability is added to a protocol stack, the
code should be changed to maintain the minimum function of a
module when other modules are updating. From this point of
view, it is better to have loosely coupled components when
designing a component-based protocol stack model.

ETRI Journal, Volume 33, Number 1, February 2011 Ji Zhang et al. 21

4. Process of Protocol Components Reconfiguration

Now the protocol stack can be reconfigured based on the
defined protocol components and RMP. The process consists
of a downloading procedure and updating procedure.

A. Downloading Procedure of a Component

The downloading procedure of a component is initiated by
the network management (NM). Figure 4 shows the detailed
steps of this procedure. The downloading procedure includes
the following steps:

Step 1. The NM sends a reconfiguration request.
Step 2. Once receiving the reconfiguration request, the RM

returns a reconfiguration response.
Step 3. The NM then sends the metadata of the component

being replaced.
Step 4. After receiving the whole metadata, the RM sends a

policy provision request to the PP.
Step 5. The PP compares the local metadata in the CM with

the downloaded metadata. If the component being replaced is
not in the list of the local metadata, or the version is older than
the current component, the RM should report the NM that the
reconfiguration is invalid.

Step 6. If the validity of the component is confirmed by the
PP, it should formulate the reconfiguration policy in terms of
the metadata and system operation state.

Step 7. The PP provides the RM with reconfiguration policy.
Step 8. The RM informs the SDM to initiate the

downloading of component software.

Fig. 4. Sequence diagram illustrating downloading process of
component.

PPNM CM RM SDM

2. Reconfiguration
response

4. Policy provision
request 5. Check validity of

component

6. Formulating
policy

7. Offer policy

8. Start download process

9. Software download request

10. Downloading software

11. Store component
to a file

12. Download completed 13. Download
completed

1. Reconfiguration
request

3. Passing component
metadata

Step 9. The SDM sends a download request to the NM.
Step 10. After the download request is confirmed, the NM

begins to transmit the component software package to the BS.
Step 11. After receiving the whole package, the SDM checks

the correctness and save it to the local file system.
Step 12. The SDM informs the RM of the download

completion after storage.
Step 13. The RM informs the NM that software

downloading is completed and then starts the component
updating process.

B. Updating Procedure of a Component

When receiving the indication of download completion from
the SDM module, the RM module will initiate the updating
procedure. Figure 5 shows the detailed steps of this procedure.
The updating procedure includes the following steps:

Step 1. The RM sends a freeze request to all components and
then all components will enter the local safe state. In the local
safe state, each component will maintain the minimum
function.

Step 2. After all components enter their own safe state, the
RM uninstalls the old component.

Step 3. After uninstallation, the RM saves all of the system
state information to the CM.

Step 4. The RM loads a new component from the file system.
If any error occurs during loading, the RM recovers the original
component and informs the NM of the reconfiguration failure.

Step 5. If loading is successful, the RM recovers the system
state from the CM. If the data representations of the old and
new components differ, the state transfer must comprise a
translation between old and new components’ data
representations.

Fig. 5. Sequence diagram illustrating updating process of component.

Old
component NM

New
component RM CM

8. Component update
succeed

1. Send freeze request
to all components

2. Uninstall
component

3. Save all of the information of
system running status

4. Loading new component

5. Recover system running status

6. Send wake-up request
to all components

7. Renew the local component metadata

22 Ji Zhang et al. ETRI Journal, Volume 33, Number 1, February 2011

Step 6. After recovery of the system operation state, the RM
sends a wake-up request to all components so that they can exit
the local safe state to support the full features of the system.

Step 7. The RM then informs the CM to renew the local
component metadata.

Step 8. Finally, the RM informs the NM of the completion of
reconfiguration.

III. Implementation of Protocol Component
Reconfiguration

For clarity, we focus on the TETRA system [16] to introduce
the proposed method. It should be noted that the
reconfiguration scheme proposed here is not limited to the
TETRA system and can also be used for other wireless
communication systems, such as UMTS and WiMax. One
reason that we choose the TETRA system is that it has a stricter
requirement of continual services than other systems. The
TETRA protocol stack is implemented on VxWorks. As a
platform of protocol processing, VxWorks meets the stability
and real-time requirements of digital trunked BS perfectly. The
method discussed here is not confined to VxWorks but
applicable to all operating systems supporting dynamic module
loading.

1. Reconfigurable Protocol Stack of TETRA

The protocol architecture of TETRA air interface (AI)
follows the generic layered structure which includes three
layers: the physical layer, the data link layer, and the network
layer.

Here we use layer 2 (L2) of TETRA AI protocol stack as an
example to illustrate the component-based protocol stack
model. Layer 2 may be further subdivided into the medium
access control (MAC) and logical link control (LLC). The
MAC sublayer should handle the problem of sharing the
medium by a number of users. The LLC sublayer resides
above the MAC and is responsible for controlling the logical
link between an MS and a BS over a single radio hop.

The public framework of MAC sublayer includes the
general MAC function, channel state module, and layer
management. The main function of each part is defined as
follows:

• The general MAC function is responsible for interaction
with the hardware platform, handling the encoding and
decoding of PDUs, synchronization of frames, and
multiplexing of logic channel.

• The channel state module maintains the allocation status
and access status of physical channels. As a core module of
MAC public framework, there are interfaces between channel

state module and all functional components.
• Layer management uses TMC-SAP for the transfer of

management information inside each layer, which is not
transferred over the AI.

There are six functional components of the MAC sublayer.
The name and function of each one are as below:

Random access control component. This component takes
charge of the procedure of random access and determines the
access permission for each slot. The component could modify
the access parameters dynamically and inform the broadcast
control component of these modifications.

Reserved access control component. When an MS has
further signaling to send after the initial access, the BS may
reserve the slots for the MS. This component takes charge of
the procedure of reserved access and the reconstruction of
fragmented service data unit from LLC. It shall inform the
channel state module to update the channel access status after
slot reservation.

Broadcast control component. The BS sends broadcast
information including cell synchronization and network
information.

Traffic transmission control component. It forwards the
voice or circuit mode data traffic to the destination MSs
according to the traffic routing table and can also process the
stealing signaling carried in the voice payload.

Channel assignment component. This component handles
channel allocation and release by communicating with the
channel state module to update the current channel usage.

Power control component. This component involves itself
in the closed-loop power control with the signal strength
measurement of L1, which is the basis of cell reselection.

Using the same method, the public framework of LLC is
defined as follows:

• Logic link management shall handle the establishment,
maintenance, and release of the basic link and advanced link
and forward the signaling from the L3.

• Formatter management deals with the encoding and
decoding of PDUs and finds the right route for the primitives
from the MAC sublayer.

• Layer management is responsible for the management of
the LLC layer.

The functional components of LLC are defined as follows:
Basic link control component. This component, composed

of the link control module, basic link acknowledged module,
and basic link unacknowledged module, is used for
transmission of acknowledged data and unacknowledged data.

Acknowledged advanced link control component. This
component is composed of a link control module, receiver, and

ETRI Journal, Volume 33, Number 1, February 2011 Ji Zhang et al. 23

Fig. 6. Reconfigurable L2 protocol stack of TETRA.

LLC

Basic link control

Link control

Logic link management

TLA-SAP

Basic link
acknowledged

Basic link
unacknowledged

Acknowledged
advanced link

Receiver Transmitter

Unacknowledged
advanced link

Layer
management

Fomatter management

TLB-SAP TLC-SAP

MAC

TMA-SAP TMB-SAP TMC-SAPTMD-SAP

Traffic transmission
control

General MAC function

Access control
Layer

management

Channel
assignment

Power control

Random access
control

Reserved
access control

Traffic route
table

Stealing from
circuit mode

capacity

Broadcast
control

Channel state
module

Allocation
status
Access
status

User plane

Hardware

Reconfiguable component

Public framework which is
not reconfigurable

Service access point

Sub-component

Reconfiguration
management plane

Link control Link control

Receiver Transmitter

transmitter, providing better quality of service than the basic
link for the transmission of packet data.

Unacknowledged advanced link control component. This
component has the same structure as the acknowledged
advanced link control component.

The model of component-based L2 protocol stack of
TETRA AI is illustrated in Fig. 6.

2. The Configuration of VxWorks

The process of protocol reconfiguration involves software
downloading, storage, and installation. VxWorks permits a user
to add code to a target system at runtime. This operation,
allowing users to install target applications or to extend the
operating system itself, provides the underlying support for
reconfiguration, which makes it possible for the BS to achieve
expansion and upgrading without hardware modifications.

VxWorks should be configured to support the process:
i) Add network components to the VxWorks kernel. TCP/IP

provides a reliable guarantee for the downloading of AI
protocol components.

ii) Configure the VxWorks kernel with the TrueFFS file
system by including the core component in BSP,
INCLUDE_TFFS. After checking the integrality, the SDM
will save the downloaded component to TrueFFS which is
reentrant, thread-safe, and supported on all CPU architectures
that host VxWorks. Call the sysTffsFormat() routine to format
the FLASH at the first time of system startup and use the
usrTffsConfig() routine to mount the VxWorks DOS file
system on a TrueFFS flash drive before the initialization of the
AI protocol stack when system restarts.

iii) Configure the VxWorks kernel with a target-resident
system symbol table by including INCLUDE_
STANDALONE_SYM_TBL to dynamically identify the new
modules. When a new component is installed in the OS kernel,
the name and address information of variables and functions
will be added into the symbol table for VxWorks to search for
the service entrance of the component.

24 Ji Zhang et al. ETRI Journal, Volume 33, Number 1, February 2011

iv) Configure VxWorks with the INCLUDE_LOADER
component and the INCLUDE_UNLOADER component to
include loader and unloader for the dynamic installation and
removal of protocol components. In the process of
reconfiguration, the RM calls the unldByModuleId() routine to
unload the old protocol component and calls loadModule() to
install the new one from TrueFFS. Finally, the RM calls
symFindByName() to search in the symbol table for the
entrance function address of the new component.

3. Behavior of Local Safe State

When a component is updating, the access status component
in the public frame of the MAC layer will prevent all of the
random access requests on the main control channel (MCCH)
to avoid channel allocation caused by the new call setup. As
explained in section II, the BS therefore needs to transmit some
PDUs to maintain the link between the BS and MS in the safe
state. The BS will continue to send NULL PDU in the MCCH
and set proper ACCESS-ASSIGN PDU in the access
assignment channel to abandon all MSs’ random access
attempts. Although the MS cannot make a random access
attempt when the serving BS is in a safe state, the MS will not
leave the BS.

If the traffic transmission control component is not being
updated, we can even keep all existing voice calls
uninterrupted. Because the traffic transmission control
component is seldom altered, this safe state strategy will be
very useful for the emergency communication system.

Furthermore, we can design a similar strategy to provide
more interactions in the safe state to minimize the effect on the
system features during the procedure of protocol components
reconfiguration.

IV. Performance Assessment

1. Factors Affecting Performance

The downloading procedure of the components is executed
by an independent thread running in the background of the OS
which does not affect the features of the original system,
whereas the updating procedure will freeze the new service
requests until the component is installed successfully and the
system state is restored. Although this process could maintain
the continuity of the original service, it has to cause some delay
in the establishment of new services. There are three main
factors that affect the reconfiguration performance:

i) The performance of the hardware platform, including the
CPU processing power, network transmission speed, and
reading and writing speed of FLASH.

ii) The task scheduling ability of OS.

iii) The granularity of the protocol component, which is a
problem in accordance with the features of the protocol stack
for module division. The granularity determines the code size
of the components as well as the complexity of realization and
the coupling degree with the external environment.

2. Performance Testing

The reconfiguration process time is measured on the
hardware platform composed of Intel PXA270 processor at
416 MHz running VxWorks 5.5.

Service delay caused by a component upgrade consists of
three parts: unloading of old component (tU), loading of new
component from the FLASH (tL), and dynamic linking with the
OS kernel (tK).

Table 1 shows the mean value of service delay with different
component sizes and different complexity. One hundred
experiments were done for each component size. A larger size
code takes more time to load from the FLASH, while the
complexity of the component affects the unloading process as
well as the dynamic linking process with the OS kernel.
Because there is no reasonable and common standard to
measure the software complexity, this item is not set in the
table. The relationship between service delay and component
complexity will be studied further in next step.

Figure 7 shows the time consumption of each part of service
delay with different component sizes and almost the same
complexity by adding lots of useless and duplicate codes. We
can conclude that the time of linking with the OS kernel
contributes the most time to the total delay. The unloading time
is stable when simply increasing the code size without
changing the complexity, but the loading time of new
component is determined by the code size only and has nothing
to do with the complexity. The dynamic linking time with the
OS kernel is influenced by both of the factors. Regarding a
module of 1 MB (protocol component or the whole protocol

Table 1. Service delay caused by component update process.

Service delay (ms)
Size of

protocol
component

(B)

Unloading
of old

component
(tU)

Copy
component
from TFFS
to SDRAM

(tL)

Link to the
OS kernel

(tK)

Total time of
component

upgrade

24k 4.8 0.6 7.7 13.1

66k 5.0 2.3 9.7 17.0

256k 7.5 11.4 54.0 72.9

1,410k 80.3 62.9 862.7 1005.9

ETRI Journal, Volume 33, Number 1, February 2011 Ji Zhang et al. 25

Fig. 7. Service delay caused by component update process.

0 500 1,000 1,5000

50

100

150

200

250

300

350

400

450

Size of porotol component (kB)

Ti
m

e
de

la
y

(m
s)

Unloading of old component
Copy component from TFFS to SDRAM
Total time of component update proccess
Loading of new component

Fig. 8. Service delay with the number of interface functions.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

Number of interface functions

Ti
m

e
de

la
y

(m
s)

Loading of new component
Unloading of old component
Total time of component update process

stack), the reconfiguration time will generally not exceed 1 s.
However, if the dynamic reconfiguration technology is not
used, the total time of system restarting, including the
establishment of the multitask environment of VxWorks kernel,
loading of AI protocol stack, initialization of protocol software,
and sending of a broadcast message, is approximately 26 s. So,
the reconfiguration method proposed in this paper greatly
improves the efficiency of the system. Unlike the method
introduced in [3] and [6], the system can still provide minimum
function services, such as broadcast and voice forward, when
the components are updating. Even when the broadcast control
component needs to be updated, the service delay is less than
the value of the timer RADIO_DOWNLINK_TIMEOUT
defined in [11] so that the MS will not leave the current serving
cell.

We also tested the effect of the number of interface functions
of a component on the services delay. The experiment result is

shown in Fig. 8. From this result, the number of interface
functions will not significantly affect the performance, so we
can ignore this factor during the interface design of a
component.

V. Conclusion

Protocol reconfiguration technology provides a
comprehensive reconfigurable capability to a communication
system related to all aspects of network architecture and all
levels of protocol standard. This paper presented a solution for
base station protocol reconfiguration of an emergency
communication system by creating a component-based
protocol framework and introducing the reconfiguration
management plane into the original protocol stack. The
solution makes full use of the characteristics of supporting
dynamic loading of applications to reduce the maintenance
costs of the base station and achieve remote upgrade protocol
stack flexibility while ensuring smooth service transition. The
main framework and process of protocol components
reconfiguration can also be applied to other communication
stacks. However, the behavior of each module in the safe state
should be carefully designed according to respective protocols.

Further research will include improving the public
framework of the protocol and deciding the granularity of
components as well as the mechanism for verifying
component’s legitimacy and integrity.

References

[1] M. Niamanesh and R. Jalili, “A Dynamic-Reconfigurable
Architecture for Protocol Stacks of Networked Systems,” Proc.
31st Annual Int. Computer Software Appl. Conf., vol. 1, 2007, pp.
609-612.

[2] E. Patouni, N. Alonistioti, and P. Magdalinos, “A Framework for
Protocol Reconfiguration,” Proc. Seventh IFIP Int. Conf. Mobile
Wireless Commun. Netw., 2005. http://www.ctr.kcl.ac.uk/
MWCN2005/Paper/C200543.pdf

[3] Y. Lee and R. Chang, “Developing Dynamic-Reconfigurable
Communication Protocol Stacks Using Java,” Software Practice
Experience, vol. 6, 2005, pp. 601-620.

[4] S. Michiels et al. “DiPS: A Unifying Approach for Developing
System Software,” Proc. 8th Workshop Hot Topics Operating
Syst., 2001, pp. 175-179.

[5] F. Foukalas et al., “Protocol Reconfiguration Using Component-
Based Design,” Proc. IFIP Int. Federation Inf. Process, 2005, pp.
148-156.

[6] M. Niamanesh and R. Jalili, “DRAPS: A Framework for Dynamic
Reconfigurable Protocol Stacks,” J. Inf. Sci. Eng., vol. 25, 2009,
pp. 827-841.

26 Ji Zhang et al. ETRI Journal, Volume 33, Number 1, February 2011

[7] S. Yi et al., “Adaptive Multilevel Code Update Protocol for Real-
Time Sensor Operating Systems,” IEEE Trans. Ind. Informatics,
vol. 4, no. 4, 2008, pp. 250-260.

[8] L. Berlemannet al., “Reconfigurable Multi-Mode Protocol
Reference Model for Optimized Mode Convergence,” Proc.
European Wireless Conf., 2005, vol. 1, 2005, pp. 280-286.

[9] E.S. Cho et al., “SCA-Based Reconfigurable Base Station
System,” Proc. IEEE Global Telecommun. Conf., 2006, pp. 1-4.

[10] W. König et al., “Reconfigurable Base Station Processing and
Resource Allocation,” Proc. 16th IST Mobile Wireless Summit,
2007, pp. 1-5.

[11] Z. Boufidis, N. Alonistioti, and M. Dillinger, “Adaptive Network
Control and Management for Beyond 3G End-to-End
Reconfiguration,” Proc. 14th IST Mobile Wireless Commun.
Summit, 2005. http://www.eurasip.org/Proceedings/Ext/IST05/
papers/416.pdf

[12] N. Olaziregi, Z. Boufidis, and E. Mohyeldin, White Paper,
Management and Control Architecture of Reconfigurable
Systems, Wireless World Research Forum Work Group 6 White
Paper, 2005. http://www.wireless-world-research.org/fileadmin/
sites/default/files/about_the_forum/WG/WG6/White%20Paper/
WG6_WP6.pdf

[13] V. Gazis, N. Alonistioti, and L. Merakos, “A Generic Model for
Reconfigurable Protocol Stacks in Beyond 3G,” IEEE Wireless
Commun., vol. 13, no. 3, 2006, pp. 70-78.

[14] N. Alonistioti, E. Patouni, and V. Gazis, “Generic Architecture and
Mechanisms for Protocol Reconfiguration,” Mobile Netw. Appl.,
vol. 11, No. 6, 2006, pp. 917-934.

[15] M. Castaldi et al., “A Lightweight Infrastructure for Reconfiguring
Applications,” LNCS 2649, 2003, pp. 231-244.

[16] ETSI EN 300 392-2 V2.4.2, Terrestrial Trunked Radio (TETRA);
Voice plus Data (V+D); Part 2: Air Interface(AI), Feb. 2004.

Ji Zhang received his BS and MS in information
and communication engineering from Beijing
Institute of Technology in 2008 and 2010,
respectively. His current research interests include
embedded system design, wireless protocol,
mobile backhaul, and ALL-IP Networks.

Hai Li received his BS and PhD in information
and communication engineering from Beijing
Institute of Technology in 1997 and 2002,
respectively. He has authored or co-authored
over 30 papers published in scientific journals or
conference proceedings. His current research
interests include embedded system design and

communication protocol engineering. He is currently working at Beijing
Institute of Technology as an associate professor.

Shujuan Hou received her PhD in signal and
information processing from Beijing Institute of
Technology in 2005. Currently, she is an
associate professor of signal and information
processing at Beijing Institute of Technology. Her
main research interest is signal processing of
mobile communication systems.

