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Distributed systems particularly suffer from Sybil attacks, 
where a malicious user creates numerous bogus nodes to 
influence the functions of the system. In this letter, we propose a 
Bloom filter-based scheme, SybilBF, to fight against Sybil 
attacks. A Bloom filter presents a set of Sybil nodes according 
to historical behavior, which can be disseminated to at least 
n·(e–1)/e honest nodes. Our evaluation shows that SybilBF 
outperforms state of the art mechanisms improving SybilLimit 
by a factor of (1/e)γ at least. 
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I. Introduction 
Distributed systems particularly suffer from Sybil attacks, in 

which a malicious user creates numerous fake identities (called 
Sybil nodes) to control a large fraction of the system [1]. 
Examples of such systems include file sharing, email, instant 
messaging, DHT routing, social network service, online voting, 
reputation systems, and so on. There are two categories of 
schemes to defend against Sybil attacks: centralized and 
distributed. The centralized schemes use a trusted central 
authority acting as the admission control system to limit Sybil 
attacks. However, lack of widely accepted central authority and 
the single point of failure make the centralized approaches 
impractical. Moreover, many users would not like to supply 
sensitive personal information for Internet services. 

The Sybil attack problem should be resolved in distributed 
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ways. Recently, some researchers leverage social networks to 
mitigate Sybil attacks [2]-[5], which are considered as state of 
the art promising defense schemes. 

Social network-based Sybil defense schemes are based on 
the assumption that a malicious user can create arbitrary 
numerous Sybil nodes but cannot establish arbitrary trust edges 
with honest nodes. They try to find the minimum cut between 
the Sybil region and the non-Sybil region. The main idea of 
social network-based defense schemes is to bind the number of 
introduced Sybil nodes through the limited attack edges (a trust 
edge between a Sybil node and an honest node is called an 
attack edge). For example, the number of Sybil nodes per 
attack edge introduced in SyiblGuard [2] is ( log ).O n n In 
SybilLimit [3], it is O(logn), where n is the number of honest 
nodes. 

In this letter, we propose a Bloom filter-based Sybil-resilient 
scheme to fight against Sybil attacks. An honest node uses a 
Bloom filter to summarize a set of Sybil nodes based on 
historical behavior, which is called a pattern. A few patterns 
from different nodes can be aggregated into one pattern using 
an improved OR-based aggregation algorithm. Finally, every 
pattern is disseminated in the system, where each pattern could 
be propagated to at least n·(e–1)/e honest nodes in SybilBF. We 
evaluate the performance of the system and the results show 
that SybilBF outperforms state of the art algorithms, which 
improves SybilLimit by a factor of (1/e)γ at least. 

II. SybilBF Model 

1. Using a Bloom Filter to Summarize a Set of Sybil Nodes 

A node can get a list of Sybil nodes via historical behavior, 
based on which we use Bloom filters [6] as indices in SybilBF. 
A Bloom filter is a space-efficient data structure for presenting 
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a set and answering membership queries. This space efficiency 
is achieved at the expense of a small possibility of false positive 
in membership queries. In most conditions, the space saving 
outweighs the drawback when the possibility of false positive 
is tuned sufficiently low. 

A Bloom filter is a set S={s1, s2,…, sq} of q Sybil nodes. In 
the beginning, it is an m-bit all-zero array. When inserting a 
Sybil node s into the set S, a Bloom filter uses k independent 
hash functions, h1, h2,…, hk, to map each Sybil node to values 
in the range {1,…, m}. The corresponding bits of hi(s) will be 
set to 1. To check whether an element s belongs to the set S 
expressed by the Bloom filter, one just needs to check whether 
all hi(s) are set to 1. If so, s is a member of S (with a small 
possibility it is wrong, which is called false positive), otherwise 
it is not. 

We assume the hash functions are totally random and kq<m. 
When all the Sybil nodes in the set S are hashed to the m-bit 
array by the k random hash functions, the possibility that one of 
m positions in the array still equals to 0 is 

/(1 1/ ) .kq kq mp m e−= − ≈             (1) 

Therefore, the false positive possibility f can be expressed as 
/(1 ) (1 ) .k kq m kf p e−= − = −            (2) 

In an efficient Bloom filter-based system, the false positive 
possibility should be minimized. From (2), we can get that 
when k=ln2·(m/q), f is minimized and fmin≈(0.6185)m/q. 

2. Pattern Aggregation 

A Bloom filter summarizing a set of Sybil nodes is called a 
pattern. Different patterns from numerous nodes can be 
aggregated into one pattern according to (3). We improve OR-
based aggregation by adding a new bit X, and when ai≠bi, this 
bit will be set to X: 
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The similarity of A and B in Table 1 can be noted in (4). Here, 
|Am|={ai

m|ai
m∈{0, 1}∧m∈{0, 1, X}∧ji=m ⇒ ji

m=1}, 
which indicates the number of m (0, 1, or X) in A. In order to 
make the aggregation efficient, we minimize the number of 
X-bits through tuning L(A, B). The pattern aggregation 
mechanism is a plug-in module in SybilBF. Different 
approaches can be used in SybilBF, but all the users in the 
system should use the same scheme. The aggregation 
approaches could also be based on counting Bloom filters,  

Table 1. Similarity of two patterns. 
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dynamic Bloom filters [7], and so on. 

3. Pattern Propagation 

A propagating user Z disseminates pattern copies through the 
system. According to the distance (with the shortest path) to the 
propagating user, every node is considered in different levels. 
For example, node Z' is i hops (with the shortest path) from the 
propagating user, so node Z' is in level i. Z sends z pattern 
copies to its neighbors (in level 1), such as z/2 for Y and z/2 for 
Y', where Y and Y' are node Z'’s neighbor nodes in level 1. Y 
remains one of the copies and sends the other z/2–1 copies to 
its neighbors in the next level. If the node does not have 
neighbors in the next level, it will destroy and drop the pattern 
copies. 

We assume social network G is an expander random graph 
[8]. Let β  denote G’s expander factor. Let η  denote G’s 
diameter. Let d denote the average node degree. Let Ni denote 
the number of nodes at level i for a propagating user. For the 
expander graph G, there exists a value 'η  to make the 
following equations stand: 

1
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We assume that a propagating user propagates μn pattern 
copies for

2 21/ (1 ) / ( 1) ( 1)/ ( 1) .e e eβ β β β βμ − + + −= ⋅ =  Let Mi denote 
the number of pattern copies sent from level i to level i+1. Let 
pi denote the probability a node at level i connects with some 
nodes at the next level i+1. Therefore, if the pattern copies are 
not used out in level i, we can use the following equation to 
describe Mi: 
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The probability that a node at level i does not connect to any 
node at level i+1, namely 1–pi, can be described as 

1

1 1 1

1
1 ( ) .

...
di i

i
i i i

N N
p

N N N Nη

−

− + −

+ −
− =

+ + + +
        (8) 

Because d>1, when 'i η< ,  we get 
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When ' ,iη η≤ <  we can also get the following equation: 
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According to (9), (10), and 
2 2( 1)/ ( 1) ,e β βμ + −=  we can easily 

derive 
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For a random propagating user, we will calculate the 
possibility that a random node w at level i does not get the 
pattern copy. The possibility that a pattern copy is sent from 
level i to level i+1 is Mi–1/M0, and the possibility it does not 
reach the level i is 1–Mi–1/M0. So, the possibility that w does not 
get the pattern copy is 1–Mi–1/(M0Ni). Applying to all the M0 

pattern copies, the possibility will be ( ) 0
1 0(1 / ) .M

i iM M N−−  
The total number of nodes which do not get the pattern copies 
is 
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Therefore, the number of nodes which can get the pattern 
copies is at least (e–1)/e. A node, which gets a copy of the 
pattern, can recognize the Sybil nodes in the pattern, so the 
probability that a Sybil node in the pattern can be detected is at 
least (e–1)/e. 

III. Evaluation 

1. Introduced Sybil Nodes 

A pattern can reach at least n·(e–1)/e nodes, so the probability 
that one node gets the information is at least (e–1)/e and the 
probability that the node does not get the information is     
1–(e–1)/e=1/e. Knowing the Sybil node historical behavior, we 
assume an average number of γ nodes. For any Sybil node,  
the probability that its historical behavior is disseminated is  
1–(1/e)γ. 
 

 

Fig. 1. Sybil nodes introduced in SybilGuard, SybilLimit, and 
SybilBF. 
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Fig. 2. False positive probability in SybilBF. 
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Figure 1(a) illustrates the Sybil nodes per attack edge 
introduced in SybilGuard, SybilLimit, and SybilBF. When the 
number of honest nodes in the system increases, the number of 
Sybil nodes introduced in SybilGuard increases faster than 
SybilLimit and SybilBF. SybilBF can improve SybilLimit by a 
factor of (1/e)γ. When γ=4, if Sybil nodes introduced in 
SybilLimit is 1,000, it will be 18 in SybilBF. Figure 1(b) plots 
the Sybil nodes introduced in SybilBF with different γ. When γ 
is not sufficiently low, the number of Sybil nodes can be 
limited efficiently. 

2. False Positive 

SybilBF limits Sybil attacks based on the historical behavior 
of Sybil nodes. We use Bloom filters to present the set of Sybil 
nodes. The Bloom filter is a space-efficient data structure, 
however, there is a small probability of errors. We analyze the 
false positive probability in SybilBF. 

Figure 2 plots the false positive probability with different 
hash functions and m/q values. When using the same number 
of hash functions, the false positive probability is in inverse 
proportion to m/q. When k=ln2(m/q), the false positive 
probability is minimized. These points are labeled by red rings 
in the figure. We can tune k and m/q to make the false positive 
probability sufficiently low. 

IV. Conclusion  

We proposed a Bloom filter-based scheme to fight against 
Sybil attacks. A node summarizes a set of Sybil nodes via a 
Bloom filter (called a pattern) based on historical behavior and 
disseminates it in the system. We proved that at least n·(e–1)/e 
honest nodes will get the pattern copy. We evaluated the system, 
and the results show that it improves the current optimal social 
network-based Sybil-resilient scheme by a factor of (1/e)γ at 

least. The results also show that we can tune parameters to 
make the false positive of the Bloom filter sufficiently low. The 
update of the dynamic set of Sybil nodes using the Bloom filter 
is the next step in our work. 
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