
826 Hengkui Wu et al. © 2011 ETRI Journal, Volume 33, Number 5, October 2011

Distributed systems particularly suffer from Sybil attacks,
where a malicious user creates numerous bogus nodes to
influence the functions of the system. In this letter, we propose a
Bloom filter-based scheme, SybilBF, to fight against Sybil
attacks. A Bloom filter presents a set of Sybil nodes according
to historical behavior, which can be disseminated to at least
n·(e–1)/e honest nodes. Our evaluation shows that SybilBF
outperforms state of the art mechanisms improving SybilLimit
by a factor of (1/e)γ at least.

Keywords: Sybil attack, Bloom filter, security.

I. Introduction
Distributed systems particularly suffer from Sybil attacks, in

which a malicious user creates numerous fake identities (called
Sybil nodes) to control a large fraction of the system [1].
Examples of such systems include file sharing, email, instant
messaging, DHT routing, social network service, online voting,
reputation systems, and so on. There are two categories of
schemes to defend against Sybil attacks: centralized and
distributed. The centralized schemes use a trusted central
authority acting as the admission control system to limit Sybil
attacks. However, lack of widely accepted central authority and
the single point of failure make the centralized approaches
impractical. Moreover, many users would not like to supply
sensitive personal information for Internet services.

The Sybil attack problem should be resolved in distributed

Manuscript received Nov. 11, 2010; revised Dec. 26, 2011; accepted Jan. 10, 2011.
Hengkui Wu (phone: +8615192510211, email: hkwu.bjtu@gmail.com) is with the Science

and Technology on Electronic Test & Measurement Laboratory, The 41st Research Institute of
CETC, Qingdao, China, and also with the School of Electronics and Information Engineering,
Beijing Jiaotong University, Beijing, China.

Dong Yang (email: dyang@bjtu.edu.cn) and Hongke Zhang (email: hkzhang@bjtu.edu.cn)
are with the School of Electronics and Information Engineering, Beijing Jiaotong University,
Beijing, China.

http://dx.doi.org/10.4218/etrij.11.0210.0431

ways. Recently, some researchers leverage social networks to
mitigate Sybil attacks [2]-[5], which are considered as state of
the art promising defense schemes.

Social network-based Sybil defense schemes are based on
the assumption that a malicious user can create arbitrary
numerous Sybil nodes but cannot establish arbitrary trust edges
with honest nodes. They try to find the minimum cut between
the Sybil region and the non-Sybil region. The main idea of
social network-based defense schemes is to bind the number of
introduced Sybil nodes through the limited attack edges (a trust
edge between a Sybil node and an honest node is called an
attack edge). For example, the number of Sybil nodes per
attack edge introduced in SyiblGuard [2] is (log).O n n In
SybilLimit [3], it is O(logn), where n is the number of honest
nodes.

In this letter, we propose a Bloom filter-based Sybil-resilient
scheme to fight against Sybil attacks. An honest node uses a
Bloom filter to summarize a set of Sybil nodes based on
historical behavior, which is called a pattern. A few patterns
from different nodes can be aggregated into one pattern using
an improved OR-based aggregation algorithm. Finally, every
pattern is disseminated in the system, where each pattern could
be propagated to at least n·(e–1)/e honest nodes in SybilBF. We
evaluate the performance of the system and the results show
that SybilBF outperforms state of the art algorithms, which
improves SybilLimit by a factor of (1/e)γ at least.

II. SybilBF Model

1. Using a Bloom Filter to Summarize a Set of Sybil Nodes

A node can get a list of Sybil nodes via historical behavior,
based on which we use Bloom filters [6] as indices in SybilBF.
A Bloom filter is a space-efficient data structure for presenting

SybilBF: Defending against Sybil Attacks via
Bloom Filters

Hengkui Wu, Dong Yang, and Hongke Zhang

ETRI Journal, Volume 33, Number 5, October 2011 Hengkui Wu et al. 827

a set and answering membership queries. This space efficiency
is achieved at the expense of a small possibility of false positive
in membership queries. In most conditions, the space saving
outweighs the drawback when the possibility of false positive
is tuned sufficiently low.

A Bloom filter is a set S={s1, s2,…, sq} of q Sybil nodes. In
the beginning, it is an m-bit all-zero array. When inserting a
Sybil node s into the set S, a Bloom filter uses k independent
hash functions, h1, h2,…, hk, to map each Sybil node to values
in the range {1,…, m}. The corresponding bits of hi(s) will be
set to 1. To check whether an element s belongs to the set S
expressed by the Bloom filter, one just needs to check whether
all hi(s) are set to 1. If so, s is a member of S (with a small
possibility it is wrong, which is called false positive), otherwise
it is not.

We assume the hash functions are totally random and kq<m.
When all the Sybil nodes in the set S are hashed to the m-bit
array by the k random hash functions, the possibility that one of
m positions in the array still equals to 0 is

/(1 1/) .kq kq mp m e−= − ≈ (1)

Therefore, the false positive possibility f can be expressed as
/(1) (1) .k kq m kf p e−= − = − (2)

In an efficient Bloom filter-based system, the false positive
possibility should be minimized. From (2), we can get that
when k=ln2·(m/q), f is minimized and fmin≈(0.6185)m/q.

2. Pattern Aggregation

A Bloom filter summarizing a set of Sybil nodes is called a
pattern. Different patterns from numerous nodes can be
aggregated into one pattern according to (3). We improve OR-
based aggregation by adding a new bit X, and when ai≠bi, this
bit will be set to X:

if
otherwise,

i i i
i

a a b
j

X
=⎧

= ⎨
⎩

 (3)

0 1
(,) .

X

C D E FL A B
A A A

ε φ ψ− × + × + ×
=

+ +
 (4)

The similarity of A and B in Table 1 can be noted in (4). Here,
|Am|={ai

m|ai
m∈{0, 1}∧m∈{0, 1, X}∧ji=m ⇒ ji

m=1},
which indicates the number of m (0, 1, or X) in A. In order to
make the aggregation efficient, we minimize the number of
X-bits through tuning L(A, B). The pattern aggregation
mechanism is a plug-in module in SybilBF. Different
approaches can be used in SybilBF, but all the users in the
system should use the same scheme. The aggregation
approaches could also be based on counting Bloom filters,

Table 1. Similarity of two patterns.

ai bi Coeff. Term Computed as

0 0

1 1
1 C 0 0 1 1A B A B∧ + ∧

0 1

1 0
ε D 0 1 1 0A B A B∧ + ∧

0 X

1 X

X 0

X 1

φ E x xA B⊕

X X ψ F x xA B∧

dynamic Bloom filters [7], and so on.

3. Pattern Propagation

A propagating user Z disseminates pattern copies through the
system. According to the distance (with the shortest path) to the
propagating user, every node is considered in different levels.
For example, node Z' is i hops (with the shortest path) from the
propagating user, so node Z' is in level i. Z sends z pattern
copies to its neighbors (in level 1), such as z/2 for Y and z/2 for
Y', where Y and Y' are node Z'’s neighbor nodes in level 1. Y
remains one of the copies and sends the other z/2–1 copies to
its neighbors in the next level. If the node does not have
neighbors in the next level, it will destroy and drop the pattern
copies.

We assume social network G is an expander random graph
[8]. Let β denote G’s expander factor. Let η denote G’s
diameter. Let d denote the average node degree. Let Ni denote
the number of nodes at level i for a propagating user. For the
expander graph G, there exists a value 'η to make the
following equations stand:

1

[0, '),i

i

N
i

N
β η

−

≥ ∀ ∈ (5)

1 [',).i

i

N
i

N
β η η− ≥ ∀ ∈ (6)

We assume that a propagating user propagates μn pattern
copies for

2 21/ (1) / (1) (1)/ (1) .e e eβ β β β βμ − + + −= ⋅ = Let Mi denote
the number of pattern copies sent from level i to level i+1. Let
pi denote the probability a node at level i connects with some
nodes at the next level i+1. Therefore, if the pattern copies are
not used out in level i, we can use the following equation to
describe Mi:

828 Hengkui Wu et al. ETRI Journal, Volume 33, Number 5, October 2011

1

if 0
() if 1.i

i i i

n i
M

p M N i
μ

−

=⎧
= ⎨ − ≥⎩

 (7)

The probability that a node at level i does not connect to any
node at level i+1, namely 1–pi, can be described as

1

1 1 1

1
1 () .

...
di i

i
i i i

N N
p

N N N Nη

−

− + −

+ −
− =

+ + + +
 (8)

Because d>1, when 'i η< , we get

1

1 1 1

'

' '

' 1 ' 1

'
1 1

1' 1' 1
1

1 1

1
[1, ') 1

...

1
1

1 11 ln()
1

1ln()

1ln() .
1

i i
i

i i i

i

i ii i

i i
i i

i i
i i

N N
i p

N N N N

p p

p

p p e

η

η

η η

η η

η

ηη
β

η

β

β β

β

β

−

− + −

−

− −

− −

−
= =

−−−
−

= =

+ −
∀ ∈ − <

+ + + +

< ⇒
+

−
> − ⇒ > ⇒

+

−
> ⇒

−
> ⇒ >

−

∑ ∑

∑ ∏

 (9)

When ' ,iη η≤ < we can also get the following equation:

1

1 1 1

1 1

' '

11
1

' '

1
[',) 1

...

1

1 ln()
1 1

ln()
1

ln() .
1

i i
i

i i i

i

i

i i

i ii i

i

i i
i i

i i
i i

N N
i p

N N N N

p p

p

p p e

η

η

η

η η

η η

ηη η

η
η η

βηη
β

η η

η η

β
β

β β
β β

β
β

β
β

−

− + −

−

−

− −

− −

−− −

−
= =

−−−
+

= =

+ −
∀ ∈ − <

+ + + +

< ⇒
+

−
> − ⇒ > ⇒

+ +

−
> ⇒

+

−
> ⇒ >

+

∑ ∑

∑ ∏

 (10)

According to (9), (10), and
2 2(1)/ (1) ,e β βμ + −= we can easily

derive
1 1

1 1

1
0 01

1 1 2 1

1

1

.
...

i ii i

i
i i

i
i

i

n n
p p

p
p

M M
p p pp

η η

η

η

η
η

μ μ
− −

= =

=
−

= −

=

< ⇒ < ⇒

< ⇒ <

∏ ∏

∑
∑

∏

 (11)

For a random propagating user, we will calculate the
possibility that a random node w at level i does not get the
pattern copy. The possibility that a pattern copy is sent from
level i to level i+1 is Mi–1/M0, and the possibility it does not
reach the level i is 1–Mi–1/M0. So, the possibility that w does not
get the pattern copy is 1–Mi–1/(M0Ni). Applying to all the M0

pattern copies, the possibility will be () 0
1 0(1 /) .M

i iM M N−−
The total number of nodes which do not get the pattern copies
is

0

' 1

1 1 1
/ '

1 0

(1) .
i i

Mi i i
i M L

i i

L L
M nN

M N e ee η

η η

η

η−

− = =

=

− ⋅ < < =
∑ ∑

∑ (12)

Therefore, the number of nodes which can get the pattern
copies is at least (e–1)/e. A node, which gets a copy of the
pattern, can recognize the Sybil nodes in the pattern, so the
probability that a Sybil node in the pattern can be detected is at
least (e–1)/e.

III. Evaluation

1. Introduced Sybil Nodes

A pattern can reach at least n·(e–1)/e nodes, so the probability
that one node gets the information is at least (e–1)/e and the
probability that the node does not get the information is
1–(e–1)/e=1/e. Knowing the Sybil node historical behavior, we
assume an average number of γ nodes. For any Sybil node,
the probability that its historical behavior is disseminated is
1–(1/e)γ.

Fig. 1. Sybil nodes introduced in SybilGuard, SybilLimit, and
SybilBF.

35

30

25

20

15

10

5

0
1 10 100 1,000 10,000

Nodes in system

Sy
bi

l n
od

es
 in

tro
du

ce
d

SybilGuard
SybilLimit
SybilBF

10

01 10 100 1,000 10,000
Nodes in system

Sy
bi

l n
od

es
 in

tro
du

ce
d 8

6

4

2

SybilBF with γ=1
SybilBF with γ=2
SybilBF with γ=4
SybilBF with γ=8

(a)

(b)

ETRI Journal, Volume 33, Number 5, October 2011 Hengkui Wu et al. 829

Fig. 2. False positive probability in SybilBF.

m/q=2

0 2 4 6 8 10
Hash function (k)

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Fa
ls

e
po

si
tiv

e
pr

ob
ab

ili
ty

 (f
)

m/q=4
m/q=8
m/q=16

When k=ln2*(m/q), f is minimized

Figure 1(a) illustrates the Sybil nodes per attack edge
introduced in SybilGuard, SybilLimit, and SybilBF. When the
number of honest nodes in the system increases, the number of
Sybil nodes introduced in SybilGuard increases faster than
SybilLimit and SybilBF. SybilBF can improve SybilLimit by a
factor of (1/e)γ. When γ=4, if Sybil nodes introduced in
SybilLimit is 1,000, it will be 18 in SybilBF. Figure 1(b) plots
the Sybil nodes introduced in SybilBF with different γ. When γ
is not sufficiently low, the number of Sybil nodes can be
limited efficiently.

2. False Positive

SybilBF limits Sybil attacks based on the historical behavior
of Sybil nodes. We use Bloom filters to present the set of Sybil
nodes. The Bloom filter is a space-efficient data structure,
however, there is a small probability of errors. We analyze the
false positive probability in SybilBF.

Figure 2 plots the false positive probability with different
hash functions and m/q values. When using the same number
of hash functions, the false positive probability is in inverse
proportion to m/q. When k=ln2(m/q), the false positive
probability is minimized. These points are labeled by red rings
in the figure. We can tune k and m/q to make the false positive
probability sufficiently low.

IV. Conclusion

We proposed a Bloom filter-based scheme to fight against
Sybil attacks. A node summarizes a set of Sybil nodes via a
Bloom filter (called a pattern) based on historical behavior and
disseminates it in the system. We proved that at least n·(e–1)/e
honest nodes will get the pattern copy. We evaluated the system,
and the results show that it improves the current optimal social
network-based Sybil-resilient scheme by a factor of (1/e)γ at

least. The results also show that we can tune parameters to
make the false positive of the Bloom filter sufficiently low. The
update of the dynamic set of Sybil nodes using the Bloom filter
is the next step in our work.

References

[1] J.R. Douceur, “The Sybil Attack,” Proc. 1st Int. Workshop Peer-
to-Peer Syst., Cambridge, MA, USA, Mar. 2002, pp. 251-260.

[2] H. Yu et al., “SybilGuard: Defending against Sybil Attacks via
Social Networks,” IEEE/ACM Trans. Netw., vol. 16, no. 3, 2008,
pp. 576-589.

[3] H. Yu et al., “SybilLimit: A Near-Optimal Social Network
Defense against Sybil Attacks,” IEEE/ACM Trans. Netw., vol. 18,
no. 3, 2010, pp. 885-898.

[4] G. Danezis and P. Mittal, “SybilInfer: Detecting Sybil Nodes
Using Social Networks,” Proc. 16th Netw. Distrib. Syst. Security
Symp., San Diego, California, USA, Feb. 2009.

[5] N. Tran et al., “Sybil-Resilient Online Content Voting,” Proc. 6th
USENIX Symp. Netw. Syst. Design Implementation, Boston, MA,
USA, Apr. 2009, pp. 15-28.

[6] B. Bloom, “Space/Time Trade-offs in Hash Coding with
Allowable Errors,” Commun. ACM, vol. 13, no. 7, 1970, pp. 422-
426.

[7] D. Guo et al., “The Dynamic Bloom Filters,” IEEE Trans. Knowl.
Data Eng., vol. 22, no. 1, 2010, pp. 120-133.

[8] J. Leskovec et al., “Statistical Properties of Community Structure
in Large Social and Information Networks,” Proc. WWW, Beijing,
China, Apr. 2008, pp. 695-704.

