

ETRI Journal, Volume 33, Number 5, October 2011 © 2011 Giang Nguyen Thi Huong and Seon Wook Kim 731

Reconfigurable computing using a field-programmable
gate-array (FPGA) device has become a promising
solution in system design because of its power efficiency
and design flexibility. To bring the benefit of FPGA to
many application programmers, there has been intensive
research about automatic translation from high-level
programming languages (HLL) such as C and C++ into
hardware. However, the large gap of syntaxes and
semantics between hardware and software programming
makes the translation challenging. In this paper, we
introduce a new approach for the translation by using the
widely used GCC compiler. By simply adding a hardware
description language (HDL) backend to the existing state-
of-the-art compiler, we could minimize an effort to
implement the translator while supporting full features of
HLL in the HLL-to-HDL translation and providing high
performance. Our translator, called GCC2Verilog, was
implemented as the GCC’s cross compiler targeting at
FPGAs instead of microprocessor architectures. Our
experiment shows that we could achieve a speedup of up
to 34 times and 17 times on average with 4-port memory
over PICO microprocessor execution in selected EEMBC
benchmarks.

Keywords: HLL-to-HDL translator, GCC2Verilog,
FPGA, compiler.

Manuscript received Nov. 2, 2010; revised Aug. 11, 2011; accepted Jan. 27, 2011.
This work was supported by Seoul R&BD Program (10920) and the Basic Science

Research Program through National Research Foundation of Korea (NRF) funded by the
Ministry of Education, Science and Technology (2011-0010262).

Giang Nguyen Thi Huong (phone: +82 2 3290 3794, email: redriver@korea.ac.kr) and Seon
Wook Kim (corresponding author, email: seon@korea.ac.kr) are with the Department of
Electrical Engineering, Korea University, Seoul, Rep. of Korea.

http://dx.doi.org/10.4218/etrij.11.0110.0654

I. Introduction

Many system developers have convincing reasons to add a
field-programmable gate array (FPGA) to their design platform,
and often replace traditional general-purpose processors or
digital signal processors (DSPs) with FPGAs due to
significantly better computational performance per watt over
microprocessors and design flexibility over ASICs [1]-[4].
However, the task of configuring FPGAs with a description of
hardware description language (HDL) like Verilog, VHDL,
and SystemC requires substantial amount of knowledge in
hardware design methods, which makes the potential
advantages of the FPGA computing unrealizable to most
software developers. Therefore, there is an increasing demand
to design hardware at a higher abstraction level such as
software programming languages without being concerned
about hardware-specific details. This approach requires a
translation tool that generates the HDL codes from commonly
used high-level programming languages (HLL) in software
development [5]-[8]. However, the large gap between
hardware (HW) and software (SW) programming concepts
makes the translation challenging [9]. For example, the view of
memory as simple bit vectors and the absence of hierarchical
control flows in function calls on hardware side make it
difficult to translate software’s complex data types, such as
multidimensional arrays, structures, or pointers, and a deeply
nested function calls into HDL automatically.

There has been intensive research on the HLL, especially C
or C-like language, to HDL translation; however, none of the
work supports all the ANSI C syntaxes [10]. Therefore, a lot of
reprogramming efforts are needed to make existing C codes
compliant with the translators [6], [7], [11]-[13]. However, the
efforts were not always successful. In [10], the authors tried to

GCC2Verilog Compiler Toolset for Complete Translation
of C Programming Language into Verilog HDL

Giang Nguyen Thi Huong and Seon Wook Kim

732 Giang Nguyen Thi Huong and Seon Wook Kim ETRI Journal, Volume 33, Number 5, October 2011

rewrite 158 testing functions to make them compatible with
several state-of-the-art translators, but they only succeeded in
45 cases. Moreover, the construction of the HLL-to-HDL
translator was not a simple task. Some researchers built their
own compiler systems from scratch [5], [8]. Others employed a
SW compiler front-end, such as Stanford University
Intermediate Format (SUIF) [14], to parse HLL codes and
build their own intermediate representation (IR) for code
optimization and HDL code generation [7], [15]. We realized
that the incomplete translation comes from the fact that the
translators have been built from a hardware designer’s view.

In this paper, we show that we can build the translator, called
GCC2Verilog, based on a widely used general HLL compiler
such as GCC [16], while supporting all C syntaxes in the
translation and providing high performance in the translated
HW codes at the same time. For our compiler, we modified the
GCC’s final code generation pass and changed a target
machine description to aim at the FPGA instead of
microprocessors. The GCC compiler offers a good
infrastructure for the implementation of an HLL-to-HDL
translator. Most SW compiler’s optimizations are beneficial for
the HDL translation; the low-level IR of an HLL compiler
resembles with HDL languages and can be easily translated
into HDL codes. Therefore, by using the existing open source
compiler, we could minimize the effort to implement our
translator and support all the ANSI C syntaxes in the translation
without any rewritten requirement. The GCC2Verilog directly
translates the final version of GCC’s IR, that is, register transfer
language (RTL), into synthesizable Verilog code, right before
the RTL code is translated into assembly code. Additionally, to
support unlimited nesting cross calls between software and
hardware and even recursive calls in hardware, the
GCC2Verilog compiler generates the hardware codes to have a
stack and to follow a host processor’s linkage convention. For
our execution framework, we used the processor in interactive
play with compiler (PICO) [17] as the host processor which is
an in-house one-way in-order embedded microprocessor and
has comparable performance with ARM9. The interface of
PICO was optimized to enable very low communication
overhead with HW intellectual properties (HWIPs) in FPGA,
which are automatically generated from C by our compiler
system. Our experiment shows that we could achieve a
speedup of up to 34 times and 17 times on average with 4-port
memory over the PICO microprocessor execution in selected
EEMBC benchmarks.

Our paper provides three main contributions: i) proof that an
existing HLL compiler system such as GCC is a good
infrastructure to build an HLL-to-HDL translator with very
insignificant implementation effort; ii) a presentation of a
detailed implementation of translation from GCC’s RTL into

Verilog language and the method to support all kinds of C
language features; and iii) a demonstration that such a compiler
system can achieve good performance in the translated HW
codes.

The rest of this paper is organized as follows. Our related
work is discussed in section II. Section III explains our
compilation and execution environment. Section IV presents
the implementation of the GCC2Verilog compiler. Section V
describes the Verilog code generation in detail. We evaluate the
performance of our compiler system in section VI. Finally, we
make conclusion in section VII.

II. Related Work

Many researches employing different approaches have
worked on the HLL-to-HDL translation to overcome the gap
between hardware and software programming concepts. Some
research, instead of supporting the commonly used HLL, used
an approach to define new HLL-like languages which contain
a subset of common HLL constructs with some extension to
control hardware instantiation and to support parallelism. For
example, Impulse-C [5], Handel-C [8], and Transmogrifier C
[18] belong to this category. However, many common HLL
programming concepts, such as pointers, structures, recursive
function calls, and irregular control statements, are not allowed
in these languages. Also, the languages are unfamiliar to most
of HLL programmers because of the requirement of hardware
design understanding.

Other researchers have tried to use only a subset of particular
high-level languages (normally C/C++) for HDL translation [6],
[7], [11]-[13], [19]. Mentor Graphics’ Catapult C [19] performs
behavioral synthesis from a strict ANSI C++ subset, that is,
C++ programs should be written in a synthesizable C++ style.
Pointers must be statically determined, and therefore memory
(de)allocation is not supported. Similarly, the Spark project [6]
implemented the C to VHDL translator without supporting
common C constructs like pointers, 2D arrays, or irregular
control statements. However, even with the supporting code
types completely rewriting source codes is necessary to make
them efficiently translated [7], [20]. An empirical comparison
on automation capacity of several common HLL-to-HDL
translators, such as Spark [6], ROCCC [7], and DWARV [13],
was presented in [10]. The translators were evaluated
qualitatively in terms of the supported ANSI C subsets,
restrictions required on the subsets, the rewritten effort needed
to make existing C codes compliant with each translator, the
requirement of HW knowledge, and the tools’ testability and
readability. The results showed that these translators supported
only 51% to 63% of the C language features; the restricted
syntaxes in input codes include a lot of commonly used data

ETRI Journal, Volume 33, Number 5, October 2011 Giang Nguyen Thi Huong and Seon Wook Kim 733

Fig. 1. GCC2Verilog’s compilation flow and execution framework.

PICO

Original C code (test.c)

Compilation Execution

int sum (int n){
int i, s=0;
for (i=0; i<n; i++)

s+=arr[i];
printf(“sum=%d\n”, s);
return s;

}
int arr[10];
int main (void){

return sum(10);
}

test.c sum
Project description

GCC

GCC2Verilog Verilog
code

FPGA
compiler

PICO
executable

code

Hardware
RTL

Symbol
table

Linker
log

HW1 HWn ...

Code preparation

D
at

a
ca

ch
e

types (float, structure, union), operators (field selection, object
address operator), control statements (while-loop, break,
continue, goto), and even function calls [10]. Also, there were
many additional restrictions in use of the supported syntaxes.
For example, the ROCCC compiler requires that for-loops
must be perfectly nested, the indices of arrays used inside a
loop must be equal to a loop counter, and the number of
iterations must be equal to the number of elements of an output
array. These restrictions make the translators far from
convenient tools for software programmers.

Overall, pointers and function calls are the most difficult
syntaxes to be translated into hardware. In [21], in order to
support pointers, the authors first declared a universal memory,
and partitioned the memory which each variable refers by
applying pointer analysis. The pointers were then synthesized
by encoding their values and generating circuits to dynamically
access locations they may reference. However, a pointer cannot
contain the address of a dynamically allocated memory whose
size is unknown at compile time. For function call, the
HybridThreads [22] and ASH [15] allowed function calls
inside hardware code, but it could not support a cross call from
hardware back to software.

III. Compilation and Execution Framework

The overview of our compilation and execution framework
is shown in Fig. 1, which consists of three phases: code
preparation, compilation, and execution. Our framework
translates C code at procedure granularity into Verilog modules,
that is, function-by-function. For the translation, a programmer
needs to identify a function name and its containing source file
name in a project description file at the code preparation phase.
An example of the project description file is shown in Fig. 1, in
which sum function in test.c source file will be translated into
Verilog code. The subroutine form in C allows each HWIP to
have its own stack space, which supports seamless cross calls

between software and hardware. Also, if there is constraint on
the number of available registers, we can spill their values onto
the stack like an HLL compiler.

The compilation phase consists of three steps: software
compilation, C-to-Verilog translation, and hardware synthesizing.

• Software compilation: The GCC compiler of a host

processor (the GCC PICO compiler) compiles an entire
input source code, that is, software and hardware codes
together, for the software execution in order to share
addresses of data and instructions with hardware, that is,
automatic address resolution in software with hardware.
Even though hardware functions are not executed in a
microprocessor, they should be included in the software
executable code. Otherwise, some software functions
accessed by the hardware may be excluded from the
executable code by GCC’s optimization. For example, the
printf library function in Fig. 1 is used only from the
hardware sum function but not from any software function.
The printf will be excluded from the executable code by a
software linker. Therefore, when hardware calls printf for
its software execution, the target function cannot be found.

• C-to-Verilog translation: Our GCC2Verilog compiler
translates the registered functions in the project description
file into synthesizable Verilog codes. The hardware
compilation needs two inputs, a symbol table and a
linking log file from the software compilation in order to
perform software address resolution, which will be
explained in the next section. The software codes and the
generated hardware codes follow the same linkage
convention for efficient cross calls between them.

• Hardware synthesizing: The generated Verilog code is
synthesized by the FPGA compiler into hardware
bitstreams; hardware functions become configured
hardware IPs on FPGA while the executable code
including software functions runs on the PICO processor.

734 Giang Nguyen Thi Huong and Seon Wook Kim ETRI Journal, Volume 33, Number 5, October 2011

Fig. 2. GCC2Verilog infrastructure with GCC’s front-end,
middle-end, and FPGA backend with additional
components (colored ones) for Verilog code generation.

High level
language

GCC front-end &
Middle-end

RTL

GCC middle-end
optimizers

FPGA target
description

Verilog code
generator

Verilog

HW instruction
scheduling

RTL-to-Verilog
translator

At the execution phase, software and hardware codes
communicate with each other through function calls, and they
use the same memory hierarchy since they use one address
space. In the current implementation, the PICO processor and
HWIPs are not concurrently executed; therefore, we do not
need to consider the memory coherence problem.

IV. GCC2Verilog Implementation

1. Configuring FPGA Backend

The GCC2Verilog was implemented as a GCC’s cross
compiler by adding a new FPGA target machine and an RTL-
to-Verilog code generator. Figure 2 shows the additional
components of GCC2Verilog attached to the conventional
GCC infrastructure to perform the Verilog code translation.
The configuration of FPGA target was used during the RTL
code optimization passes and the code generation. After
performing all optimizations specific to the FPGA backend, the
final RTL code was passed to the RTL-to-Verilog translator
which consists of the HW instruction scheduler and the Verilog
code generator.

GCC is a multitarget compiler, and therefore the work of
porting a new target backend can be done very easily. The
FPGA targeted machine was assumed as a twenty-way in-
order microprocessor with plenty of registers. The number of

execution ways and registers are redundantly defined so that
the compiler can aggressively optimize the code for the best
performance, that is, exploiting higher instruction-level
parallelism. The number of functional units and registers
actually used in an HWIP generated from the GCC2Verilog
compiler is dependent on the application’s characteristics. The
number of used registers is minimized by register allocation in
the GCC pass. Also, we have a lot of flexibilities in code
generation when comparing a traditional microprocessor
backend since there is no constraint in designing the instruction
set architecture (ISA) of the FPGA target (or Verilog backend).
For example, in order to reduce intermediate operations, that is,
reduce the number of instructions, we tried to combine add/sub,
logical, and shifts operations since these operators can be
executed together in one clock cycle due to their short
execution latency. The following instructions are some
examples: (a + b) >> d, a + b –c, (a & b) << d, and a – (b ̂ d).

2. Utilizing the GCC’s RTL for Verilog Code Translation

The GCC’s RTL intermediate representation (IR) can be
easily used for HDL code generation. An RTL instruction is
constructed with a 3-address form to describe a functional unit
and its operands (stored in registers or memory) for execution
on a target machine [23], and therefore, the IR can be easily
mapped to Verilog expression. The GCC2Verilog utilizes the
GCC’s last RTL version, right before it is translated into
assembler code, as input of the Verilog code translation.
Therefore, we can take advantage of rich optimization
techniques in GCC such as deadcode elimination, constant
propagation, and loop unrolling. In GCC’s RTL IR, all accesses
to C complex data types such as pointers and structures are
converted into simple memory accesses; all complex control
statements are lowered to jump instructions. So, the
burdensome problems of supporting pointers, irregular control
statement, and complex data types of other HLL to HDL
translation researches are naturally resolved.

We applied the finite state machine (FSM) model to the
generated Verilog code so that it preserves the software
execution order while exploiting concurrency in hardware
execution. A function’s RTL sequences are divided into
several FSM states by considering control dependence, data
dependence, and memory constraint, that is, the number of
allowed concurrent memory accesses, and they are scheduled
at compilation time, that is, statically by the HW instruction
scheduler in Fig. 2. A state of the FSM represents an
execution of one clock cycle. Every arithmetic instruction
also takes only one cycle in the hardware, and independent
instructions are wrapped within one FSM state for parallelism
exploitation. Some instructions such as function calls and

ETRI Journal, Volume 33, Number 5, October 2011 Giang Nguyen Thi Huong and Seon Wook Kim 735

Table 1. Examples of PICO assembler code and corresponding generated Verilog code of GCC2Verilog translator.

Verilog code
Operations PICO assembler

Datapath Control unit

Addition add3 $r0, $r2, $r8 reg0 <= reg2 + reg8;
Multiplication mult3 $r0, $r2, $r8 reg0 <= reg2 * reg8;

Shift left asli $r3, #1 reg3 <= reg3 <<< 1;

Memory load ld.w $r2, $r5

always@(posedge clk or negedge reset)
if(!mem_stall) begin
 read <= 0;
 case (pc)

 0: begin
 addr <= reg5;
 read <= 1’b1; be <= 4’b1111;
 end
 1: reg4 <= rdata;
 …
endcase

end

always@(*)
if(!mem_stall)
case (pc)

0: nx_pc <= 1;
1: nx_pc <= 2;
…

endcase
always@(posedge clk or negedge reset)
begin
….
 pc <= mem_stall ? pc : nx_pc;
end

Conditional branch
cmpi $r2, 9

blt.L7

 assign successor = (reg2 <= 9);
always@(*)
if(!mem_stall)
case(pc)…
 x: nx_pc <= successor ? dest1 : dest0;
endcase

Table 2. Example of code generation using one and two memory
ports of FPGA backend.

Generated Verilog code
Assembly code

One-port memory Dual-port memory
1. rsh $r7, #2
2. st.w ($r8+4), $r7
3. ld.w $r4, ($r0)
4. add3 $r0, $r8, $r0
5. mult $r7, $r3, $r3

case (pc)
 0: begin

reg7 <= reg7 >> 2;
addr <= reg8 + 4;
write <= 1’b1;
be <= 4’b1111;
pc <= 1;

 end
 1: begin

wdata <= reg7;
addr <= reg0;
read <= 1’b1;
be <= 4’b1111;
reg0 <= reg8 + reg0;
reg7 <= reg3 * reg3;
pc <= 2;

 end
2: reg4 <= rdata;
 …
endcase

case (pc)
 0: begin

reg7 <= reg7 >> 2;
addr0 <= reg8 + 4;
write0 <= 1’b1;
be0 <= 4’b1111;
addr1 <= reg0;
read1 <= 1’b1;
be1 <= 4’b1111;
reg0 <= reg8 + reg0;
pc <= 1;

 end
 1: begin

wdata0 <= reg7;
reg7 <= reg3 * reg3;

 reg4 <= rdata1;
pc <= 2;

end
…
endcase

memory operations take several cycles; they are executed in
several continuous FSM states. Table 1 compares some

PICO’s assembler instructions with the corresponding
generated Verilog codes. The Verilog codes for common
arithmetic and logical operations are similar to the PICO
assembly codes. The load instruction is executed in two FSM
states: the first state issues a memory service with an address
(addr) and control signals (be, read), and the second state
checks the readiness of the read data and writes the data into a
register (reg4 <= rdata).

Table 2 shows the details of memory instruction scheduling.
Instructions 2 and 3 are independent, but they are serialized if
one-port memory is used. The hardware instruction scheduler
divides one memory RTL into two FSM states and reschedules
them for exploiting higher instruction level parallelism (ILP).
Instruction 2 is truly dependent on instruction 1; however,
instruction 2’s Verilog code for memory address preparation
and control handling are independent on instruction 1;
therefore, these Verilog statements can be executed together
with instruction 1 at the same state.

Our compiler can generate the Verilog code from any C code.
Therefore, we can also translate codes to contain dynamic
pointers or memory management functions like malloc into
Verilog without any limitation. However, we did not try to
translate the functions into hardware due to execution in
efficiency since the memory management is better performed
by OS. The memory allocation is done by SW, that is, OS, and
then the allocated memory address is shared by HW through

736 Giang Nguyen Thi Huong and Seon Wook Kim ETRI Journal, Volume 33, Number 5, October 2011

the HW and SW calling method in [24]. The memory
deallocation is done in the similar way. We also did not
implement floating-point functional units inside FPGA due to
resource issue; whenever a floating-point operation needs to be
performed, the GCC2Verilog calls a library function of GCC
(libgcc) in software. The non-blocking assignment (<=) is used
in the generated Verilog code to avoid any kind of race
condition. In this paper, we focus only on the C to Verilog
translation, but with only minor changes, our compiler system
is able to support translation of other HLLs supported by GCC,
such as FORTRAN, C++, and Java, into Verilog.

3. Address Resolution between Hardware and Software

Since only one address space is used for both software codes
and hardware codes, addresses of global variables as well as
target/return addresses of software and hardware functions
should be shared between their codes. In order to perform a call,
a caller must know a callee’s address in software or hardware.
Also, the callee should know the return address of the caller for
correctly restoring the caller’s execution. However, in case of a
cross call (SW calls HW or HW calls SW), the hardware does
not know addresses in software and vice versa because they are
separately compiled. Therefore, we need to resolve the
software addresses for hardware execution and hardware
addresses for software execution.

The hardware address resolution is done by assigning a
unique hardware identification number (HWID) to each
hardware function at the compilation phase; this work is
automatically done by the PICO and GCC2Verilog compilers.
The HWID is considered as an access point to a hardware
function, since the hardware does not use addresses like in the
software. A software function will use the HWID to call a
function in hardware. When an HWIP performs a function call,
its HWID and its currently executing state are combined to
make a return address for the callee.

In this paper, we only consider the software address
resolution in case that the software code is statically linked,
which is the common case in embedded systems. As shown
in Fig. 1, the software and hardware compilation should be
tightly coupled; the hardware compilation uses two results
from the software compilation process: a symbol table and a
linking log file. The symbol table file is extracted from the
executable code generated by the software compilation. The
table contains address information of all global/static
variables as well as software function addresses. The linking
log file is used to resolve addresses of software constant data.
If a constant like the (“sum =%d”) string in Fig. 1 is not
declared as a variable, its address will not appear in the
symbol table. Since only a linker knows the addresses of

constant data, we modified the GNU linker to print out the
size and offset information of constant data in object files to
the linking log file so that GCC2Verilog can use it to calculate
the data addresses. Using the linking log file and the symbol
table file as inputs, the hardware compilation can resolve all
kind of addresses in software as if it is linked with software
code. For the address resolution when the software is
dynamically linked, we can apply the same method as
described in [24.

V. Verilog Code Generation

One HWIP generated by the GCC2Verilog compiler consists
of one datapath and one control unit. The control unit performs
the FSM state transition based on control flow and interaction
with other components (PICO, other HWIPs or the memory).
The control unit controls the datapath execution through a state
variable (pc) which is similar as a program counter in a
microprocessor. The datapath is generated from RTL
instructions and performs the calculation of an HWIP.

Figure 3 shows an example of how the C function is
translated into Verilog code using our compiler system. In Fig.
3(a), the example C code contains a calculate() hardware
function, which is called from the main function in software.
The HW function uses three pointer variables: history,
coefficient, and Out whose contents are dynamically allocated
at runtime by the main function. In general, the code containing
dynamic allocated pointers like this cannot be supported by
other HLL-to-HDL translators; however, it is no longer a
problem in our approach. The memory is allocated in software,
and the allocated address can be loaded from its pointer address
obtained through software address resolution. The HW
function’s RTL code contains four basic blocks (BBs), and they
are numbered from 2 to 5. The control flow between BBs and
the FSM states contained within each BB are shown in Fig.
3(b); a start and a finish state are inserted at the beginning and
the end of the function. A control unit and a datapath of the
translated Verilog code are shown in Figs. 3(c) and 3(d),
respectively. In this example, the datapath uses 2-port memory.

1. Code Generation for Datapath

The HW instruction scheduler of GCC2Verilog divides the
RTL sequence within a BB into FSM states based on data
dependences as well as resource constraint between
instructions so that independent statements are grouped into
one FSM state.

The communication between software functions and
GCC2Verilog generating HWIPs follows the PICO’s calling
convention. Therefore, an HWIP gets its input arguments

ETRI Journal, Volume 33, Number 5, October 2011 Giang Nguyen Thi Huong and Seon Wook Kim 737

Fig. 3. GCC2Verilog’s code generation method: (a) C code, (b) RTL control flow of calculate HW function, (c) control unit, and (d)
datapath of generated Verilog module.

State 6

State 7

State 8

State 3

State 4

State 5

State 9

State 10

State 14

State 15

Start State 0

BB 2

BB 3

BB 4

BB 5

End

State 1

State 2

Int *history, *Out;
Void calculate (int bound, int* coefficient, int scale){

int i, signalOut, *his=history;
int *out=Out;
for(i=0; i<bound;i++){

signalOut=(int)((*coefficient--)*(his++));
signalOut+=1<<(scale–1)
signalOut>>=scale;
*out++signalOut;

}
}
int main(void){

int*coef=(int*) malloc (SIZE*sizeof(int));
Out=(int*) malloc (SIZE*sizeof(int));
history=(int*)malloc(SIZE*sizeof(int));
calculate(SIZE, coef, SCALE);

..
}

BB 3

BB 4

BB 5

BB 2

End

Start

State 11

State 12

State 13

(a)

assign successor[2]=(reg12<=0);
assign successor[4]=(reg14!=reg12);
assign finis=(pc==14);

always @*
if(!mem_stall)

case(pc)
0:nx_pc=1;
1:nx_pc=2;
2:nx_pc=successor[2]?11:3;
3:nx_pc=4;
4:nx_pc=5;
5:nx_pc=6;
6:nx_pc=7;
7:nx_pc=8;
8:nx_pc=9;
9:nx_pc=10;

10:nx_pc=successor[4]?6:11;
11:nx_pc=12;
12:nx_pc=13;
13:nx_pc=14;
14:nx_pc=15;
15:nx_pc=15;
default:nx_pc=pc;

endcase

always @(posedge clk or negedge reset)
if(~reset) pc=16’hffff;
else if(enable)

pc<=0;
else pc<=mem_stall?pc:nx_pc;

BB 2

BB 3

BB 4

BB 5

always@(posedge clk or negedge reset)
..
if(~mem_stall) begin

write0 <=1’b0; read0 <=1’b0;
write1 <=1’b0; read1 <=1’b0;
case(pc)

1:begin
addr0 <=SP–4;
write0 <=1’b1; be0 <=4’b1111;

end
2:begin

wada0 <=reg0; SP<= SP–8;
end
3:begin

addr0 <=32’hbb8;//Out ptr
read0 <=1’b1; be0 <=4’b1111;
addr1 <=SP+20;
read1<=1’b1; be1 <=4’b1111;
reg14 <=0;

end
4:begin

reg11 <=rdata0; // Out value
reg23 <=rdata1; // scale
addr0 <=32’hbb4; // history ptr
read0 <=1’b1; be0 <= 4’b1111;

end
5:begin

reg9 <=rdata0;//history value
reg15 <=1 <<<(reg23–1);

end
6:begin

addr0 <=(reg9); //history
read0 <=1’b1; be0 <=4’b1111;
addr1 <=(reg13); // coefficient
read1 <=1’b1; be1 <=4’b1111;
reg14 <=reg14+1;
reg13 <=reg13–4;
reg9 <=reg9+4;

end
7:begin

reg8 <=rdata0; reg7 <= rdata1;
end
8:begin

reg7 <=reg8*reg7;
addr0 <=(reg11); // Out
write0 <=1’b1; be0 <=4’b1111;

end
9:begin

wdata0 <=(reg7+reg15)>>reg23;
reg11 <=reg11+4;

end
11:SP <=SP+8;
12:begin

addr0 <=SP–4;
write0 <=1’b1; be0 <=4’b1111;

end
13:reg0 <=rdata0;

endcase

(b)

(c)
(d)

through argument registers and a shared stack space with the
software. At the entry block, an HWIP pushes a link register
(reg0) to the stack. If any caller-saved registers are used inside
the HWIP, these registers are also pushed to the stack. After
that a stack pointer value is adjusted as shown in state 2.
Through the SW address resolution, the hardware knows that
the addresses of Out and history are 0xbb8 and 0xbb4,
respectively. At BB 3, the addresses pointed by Out and history
are loaded into reg11 at state 3 and 4 and reg9 at state 4 and 5,
respectively. The first two arguments of the calculate function

(bound and coefficient) are passed to the HWIP through
argument registers, reg12 and reg13; the third argument (scale)
is passed through a stack. At state 3 of the FSM, the scale
argument is also loaded into reg23 from the stack address
(SP+20). The BB 4 performs the main loop execution: loading
elements of the array pointed by history and coefficient,
calculating a value, and writing the value to the memory
addresses pointed by Out. Finally, the stack pointer SP is
restored, and the link register is popped at the exit of BB 5. In
hardware, since an arithmetic instruction takes only one clock

738 Giang Nguyen Thi Huong and Seon Wook Kim ETRI Journal, Volume 33, Number 5, October 2011

Table 3. Description of translated code in EEMBC benchmarks.

Benchmark HW functions Called SW functions Inlined Line Unroll Time (%)

aifirf t_run_test
th_malloc_x (malloc), GetTestData, th_signal_start,

th_exit (exit), GetInputValues, calc_crc32,
th_signal_finished

WriteOut 422 3 100

idctrn
t_run_test,

GetInputValues
th_malloc_x (malloc), GetTestData, th_signal_start, cos,

calc_crc32, th_exit (exit), th_signal_finished
WriteOut,

unPack 630, 20 8 100

autcor fxpAutoCorrelation 20 32 99

conven convolutionalEncode 45 4 98

fft fxpfft assert 102 2 98

bezier interpolatePoints paramatric 55 4 99

dither ditherImage memset 115 4 99

rgbhpg t_run_test th_signal_start, th_signal_finished, calc_crc8 94 16 100

rgbyiq t_run_test
th_signal_start, th_signal_finished, th_printf (printf),

th_malloc_x (malloc), calc_crc8, th_exit (exit) 132 12 100

cycle and the non-blocking assignment is used, we can ignore
the anti-dependency among them. For example, at state 6 of
Fig. 3(d), the reg9 is read by the (addr0 <= reg9) instruction
and updated by the (reg9 <= reg9 + 4) instruction, but the two
instructions still can be executed within one FSM state.

2. Code Generation for Control Unit

The control unit of HWIP is implemented with two Verilog
always blocks as shown in Fig. 3(c). One always block (top in
Fig. 3(c)) specifies the next state (nx_pc) statically, and the
other block (bottom in Fig. 3(c)) determines the next state
dynamically, that is, take a current state or the next state. The
state transition is decided based on the HW function’s internal
control flow, control signals from other HWIPs or PICO, and
ready signals from memory. An HWIP starts when it receives
an enable control signal, and stops when it reaches an ending
state.

Almost all RTL instructions are executed by the datapath
except comparison and jump instructions. A jump instruction
changes the control flow among BBs, which means changing
the state variable (pc), so it is implemented in the control unit
instead of the datapath. A compare instruction is also excluded
from the datapath due to the similar reason. The
implementation of a branch at state 2 of Fig. 3(c) can be
explained as the comparison instruction checking the branch
condition implemented as a statement (assign successor[2] =
(reg12 <= 0)). The successor[3] signal is then used to perform
the jump instruction: (2: nx_pc = successor[2] ? 11 : 3).

A state transition is performed if and only if the memory is
not busy, that is, a mem_stall signal sent from the memory is
not set. The condition ensures that if an FSM state containing

memory instructions, the FSM cannot change to another state
before the memory instructions finish (pc <= mem_stall ?
pc : nx_pc), so that ensuring the correctness of the program. At
the end of the function, the control unit announces its finish
status to its caller by setting a finish signal (assign finish =
(pc==14)). After that the HWIP is stalled (15: nx_pc = 15).

VI. Performance Evaluation

In order to evaluate the quality of our generated Verilog code,
we used several EEMBC benchmarks [25]. We simulated the
Verilog code with the PICO microprocessor on the ModelSim
[26] simulator. Also, we used 1, 2, 4, and 8-port memory
access configurations for performance evaluation since the
number of concurrent memory accesses affects the overall
performance significantly.

Table 3 describes in detail the selected codes. The HW
functions column lists functions which are translated into
Verilog by our GCC2Verilog. The Called SW functions
column names the SW functions called by functions in the HW
functions column. The inlined functions column lists functions
that are inlined within the HW functions, and the Lines shows
the number of C code lines of each HW function (including the
codes of inlined functions). To exploit ILP, we applied the loop
unrolling to the benchmarks; the number of unrolling times
was selected for the best performance and it is shown in Unroll
column. Both the GCC2Verilog and the PICO compiler were
implemented based on the GCC version 4.2.2 [16]. All codes
were compiled with –O3.

Figure 4 shows the speedup of PICO+HWIP execution with
respect to the PICO-only execution when using 1, 2, 4 or 8-port
memory. The speedup gain by PICO+HWIP is 8, 12, 17, and

ETRI Journal, Volume 33, Number 5, October 2011 Giang Nguyen Thi Huong and Seon Wook Kim 739

Fig. 4. Speedup of PICO+HWIPs execution with respect to
PICO-only.

aifirf idctrn autcor fft conven bezier dither rgbhpg rgbyiq average

50

40

30

20

10

0

1 port 2 port 4 port 8 port

21 times on average, respectively. The measured execution
time of each benchmark is started from th_signal_start() to
th_signal_finished() functions; the two functions are called
within the t_run_test() function; this is the standard time
measurement of EEMBC. The ratios of the execution time of
translated functions in HW functions column and their callees
to the total execution time are shown in the time column of
Table 3. The speedup includes the communication overhead
between PICO and HWIPs. We used the approach in [24] for
the communication between the PICO and HWIPs. However,
the PICO’s interface and ISA were optimized so that the SW
can call to HW with one machine instruction. Therefore, the
calling overhead is very insignificant and almost does not affect
the final performance.

In memory intensive benchmarks such as autcor, rgbhpg,
and rgbyiq, the speedup is nearly proportionally increased
when the number of memory ports is increased. The speedup
on aifirf, fft, and conven benchmarks is less significant because
loops inside the benchmarks are small, not computation
intensive, or containing only few numbers of iterations.

The performance of the Verilog code translated from
machine RTL is still unimpressive because the instruction
parallelism in RTL is limited. However, we have not yet aimed
at the high performance from exploiting various levels of
parallelism like in many previous works [2]-[5],[7],[15],[19],
but focused on supporting a complete, unmodified translation
of a high level language into Verilog with acceptable code
quality as the first step of our research. We believe that the
parallelism exploitation in FPGA would be similar to or same
as the SW parallelism. Therefore, several techniques which are
already available in the GCC compiler for higher parallelism
exploitation, such as aggressive instruction scheduling for
wide-issue superscalar processors and VLIW machines,
predicate execution, or the OpenMP for multithread execution,
can be applied to improve the quality of our code
generation. However, since the FPGA target has some
advantages over microprocessors. The FPGA is not limited to

predefined instruction set architectures or fixed number of
functional units and registers, etc. Our GCC2Verilog may have
more opportunities than general SW compilers in optimizing
code and exploiting parallelism.

VII. Conclusion

The translation of HLL into HDL for hardware design has
not been fully supported due to the large difference between
software and hardware programming concepts. This paper
proposed a novel approach to build an HLL-to-HDL translator,
called the GCC2Verilog compiler based on the commonly
used GCC compiler toolsets. By taking the approach, we could
reduce the implementation effort and resolve all syntax issues
in the translation while providing high performance at the same
time. We fully described the method to translate RTL into
Verilog code and introduced a complete address resolution
method between software and hardware. To the best of our
knowledge, our work is the first attempt of making a compiler
system and its execution framework which supports the
complete translation of C language into the Verilog HDL. Our
GCC2Verilog is a cross compiler of GCC, which targets the
FPGA instead of microprocessor architectures. We verified the
compiler code generation with several EEMBC benchmarks
which have complex use of pointers and function calls. The
achieved speedup was up to 34 times and 17 times on average
with 4-port memory system with respect to the PICO
microprocessor.

Even though our system delivers good performance, we
need to resolve two main issues. One is to optimize the
memory access to achieve good performance even with limited
number of memory ports. The other problem is how to support
dynamic program execution status in hardware codes like an
overflow detection of a signed integer addition in a
microprocessor. We leave these issues for our future work.

References

[1] D. Andrews et al., “Programming Models for Hybrid FPGA-CPU
Computational Components: A Missing Link,” IEEE Micro, vol.
24, no. 4, Jul./Aug. 2004, pp. 42-53.

[2] T.J. Callahan, J.R. Hauser, and J. Wawrzynek, “The Garp
Architecture and C Compiler,” IEEE Comput., vol. 33, no. 4,
2000, pp. 62-69.

[3] S.C. Goldstein et al., “PipeRench: A Coprocessor for Streaming
Multimedia Acceleration,” Int. Symp. Comput. Architecture, May
1999, pp. 28-39.

[4] A. Hormati et al., “Optimus: Efficient Realization of Streaming
Applications on FPGAs,” Int. Conf. Compilers, Architectures,
Synthesis for Embedded Syst., Oct. 2008, pp. 41-50.

740 Giang Nguyen Thi Huong and Seon Wook Kim ETRI Journal, Volume 33, Number 5, October 2011

[5] “Impulse Tutorial: Generating HDL from C Language,” Impulse
Accelerated Technology, Inc., 2009.

[6] S. Guptaet al., “SPARK: A High-level Synthesis Framework for
Applying Parallelizing Compiler Transformations,” Int. Conf.
VLSI Design, Jan. 2003, pp. 461-466.

[7] J. Villarreal et al., “Designing Modular Hardware Accelerators in
C with ROCCC 2.0,” Field Programmable Custom Comput.
Mach., May 2010, pp. 127-134.

[8] I. Page, “Constructing Hardware-Software Systems from a Single
Description,” J. VLSI Signal Process., vol. 12, no. 1, 1996, pp. 87-
107.

[9] S.A. Edwards, “The Challenges of Hardware Synthesis from C-
like Languages,” Design, Automation and Test in Europe, Sept.
2005, pp. 66-67.

[10] A.J. Virginia, Y.D. Yankova, and K.L. Bertels, “An Empirical
Comparison of ANSI-C to VHDL Compilers: SPARK, ROCCC
and DWARV,” Anual Workshop Circuits, Syst. Signal Process.,
Nov. 2007.

[11] V.V. Sanevelly and R.L. Haggard, “A Procedure for Designing a
Translator from C to VHDL,” Southeastern Symp. Syst. Theory,
2002, pp. 329-333.

[12] D. Soderman and Y. Panchul, “Implementing C Designs in
Hardware: A Full-Featured ANSI C to RTL Verilog Compiler in
Action,” Int. Verilog HDL Conf. VHDL Int. Users Forum, 1998,
p. 22.

[13] Y.D. Yankova, “DWARV: Delft Workbench Automated
Reconfigurable VHDL Generator,” 17th Int. Conf. Field
Programmable Logic Appl., Aug. 2007, pp. 697-701.

[14] R.P. Wilson et al., “SUIF: An Infrastructure for Research on
Parallelizing and Optimizing Compilers,” ACM SIGPLAN
Notices, vol. 29, no. 12, Dec. 1994, pp. 31-37.

[15] M. Budiu et al., “Spatial Computing,” Int. Conf. Architectural
Support Programming Languages Operating Syst., 2004, pp. 14-
26.

[16] Richard M. Stallman, “GNU Compiler Collection Internals for
GCC version 4.2.2,” GNU, 2005.

[17] Y. Na et al., “Chip Implementation of PICO Processor,” CCC
Conf., Feb. 2010.

[18] D. Galloway, “The Transmogrifier C Hardware Description
Language and Compiler for FPGAs,” IEEE Symp. Field
Programmable Custom Comput. Mach., 1995, pp. 136-144.

[19] Andres Takach, “Catapult C Synthesis: Creating Parallel
Hardware from C++,” Int. Symp. Field-Programmable Gate
Arrays Workshop, Feb. 2008.

[20] M.B. Gokhale et al., “Stream-Oriented FPGA Computing in the
Streams-C High Level Language,” IEEE Symp. Field-
Programmable Custom Comput. Mach., 2000, pp. 49-56.

[21] L. Semeria and G.D. Micheli, “Resolution, Optimization, and
Encoding of Pointer Variables for the Behavioral Synthesis from
C,” IEEE Trans. Comput.-Aided Design Integrated Circuits Syst.,

vol. 20, 2001, pp. 213-233.
[22] E. Anderson et al., “Memory Hierarchy for MCSoPC

Multithreaded Systems,” Int. Conf. Eng. Reconfigurable Syst.
Algorithms, June 2007, pp. 44-50.

[23] A.V. Aho et al., Compilers: Principles, Techniques, and Tools,
Addison-Wesley, 2nd ed., 2006.

[24] G. Nguyen thi Huong and S.W. Kim, “Support of Cross Calls
between a Microprocessor and FPGA in CPU-FPGA Coupling
Architecture,” Reconfigurable Architecture Workshop, Apr. 2010.

[25] J.A. Poovey et al., “A Benchmark Characterization of the
EEMBC Benchmark Suite,” IEEE Micro, vol. 29, no. 5,
Sept./Oct. 2009, pp. 18-29.

[26] ModelSim, Mentor Graphics Inc. http://www.model.com/

Giang Nguyen Thi Huong received her BS in
information technology from Vietnam National
University, Hanoi, Vietnam, in 2004. She is now
working on her PhD in electrical engineering at
Korea University, Seoul, Rep. of Korea. Her
research interests include compiler construction,
FPGA, and microprocessor architecture.

Seon Wook Kim received the BS in electronics
and computer engineering from Korea University,
Seoul, Rep. of Korea, in 1988. He received the
MS in electrical engineering from Ohio State
University, Columbus, Ohio, USA, in 1990, and
the PhD in electrical and computer engineering
from Purdue University, West Lafayette, Indiana,

USA, in 2001. He was a senior researcher at the Agency for Defense
Development from 1990 to 1995, and a staff software engineer at
Intel/KSL from 2001 to 2002. Currently, he is a professor and chair with
the School of Electrical Engineering of Korea University. His research
interests include compiler construction, microarchitecture, and SoC
design. He is a senior member of ACM and IEEE.

