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Reconfigurable computing using a field-programmable 
gate-array (FPGA) device has become a promising 
solution in system design because of its power efficiency 
and design flexibility. To bring the benefit of FPGA to 
many application programmers, there has been intensive 
research about automatic translation from high-level 
programming languages (HLL) such as C and C++ into 
hardware. However, the large gap of syntaxes and 
semantics between hardware and software programming 
makes the translation challenging. In this paper, we 
introduce a new approach for the translation by using the 
widely used GCC compiler. By simply adding a hardware 
description language (HDL) backend to the existing state-
of-the-art compiler, we could minimize an effort to 
implement the translator while supporting full features of 
HLL in the HLL-to-HDL translation and providing high 
performance. Our translator, called GCC2Verilog, was 
implemented as the GCC’s cross compiler targeting at 
FPGAs instead of microprocessor architectures. Our 
experiment shows that we could achieve a speedup of up 
to 34 times and 17 times on average with 4-port memory 
over PICO microprocessor execution in selected EEMBC 
benchmarks. 
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I. Introduction 

Many system developers have convincing reasons to add a 
field-programmable gate array (FPGA) to their design platform, 
and often replace traditional general-purpose processors or 
digital signal processors (DSPs) with FPGAs due to 
significantly better computational performance per watt over 
microprocessors and design flexibility over ASICs [1]-[4]. 
However, the task of configuring FPGAs with a description of 
hardware description language (HDL) like Verilog, VHDL, 
and SystemC requires substantial amount of knowledge in 
hardware design methods, which makes the potential 
advantages of the FPGA computing unrealizable to most 
software developers. Therefore, there is an increasing demand 
to design hardware at a higher abstraction level such as 
software programming languages without being concerned 
about hardware-specific details. This approach requires a 
translation tool that generates the HDL codes from commonly 
used high-level programming languages (HLL) in software 
development [5]-[8]. However, the large gap between 
hardware (HW) and software (SW) programming concepts 
makes the translation challenging [9]. For example, the view of 
memory as simple bit vectors and the absence of hierarchical 
control flows in function calls on hardware side make it 
difficult to translate software’s complex data types, such as 
multidimensional arrays, structures, or pointers, and a deeply 
nested function calls into HDL automatically.  

There has been intensive research on the HLL, especially C 
or C-like language, to HDL translation; however, none of the 
work supports all the ANSI C syntaxes [10]. Therefore, a lot of 
reprogramming efforts are needed to make existing C codes 
compliant with the translators [6], [7], [11]-[13]. However, the 
efforts were not always successful. In [10], the authors tried to 
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rewrite 158 testing functions to make them compatible with 
several state-of-the-art translators, but they only succeeded in 
45 cases. Moreover, the construction of the HLL-to-HDL 
translator was not a simple task. Some researchers built their 
own compiler systems from scratch [5], [8]. Others employed a 
SW compiler front-end, such as Stanford University 
Intermediate Format (SUIF) [14], to parse HLL codes and 
build their own intermediate representation (IR) for code 
optimization and HDL code generation [7], [15]. We realized 
that the incomplete translation comes from the fact that the 
translators have been built from a hardware designer’s view.  

In this paper, we show that we can build the translator, called 
GCC2Verilog, based on a widely used general HLL compiler 
such as GCC [16], while supporting all C syntaxes in the 
translation and providing high performance in the translated 
HW codes at the same time. For our compiler, we modified the 
GCC’s final code generation pass and changed a target 
machine description to aim at the FPGA instead of 
microprocessors. The GCC compiler offers a good 
infrastructure for the implementation of an HLL-to-HDL 
translator. Most SW compiler’s optimizations are beneficial for 
the HDL translation; the low-level IR of an HLL compiler 
resembles with HDL languages and can be easily translated 
into HDL codes. Therefore, by using the existing open source 
compiler, we could minimize the effort to implement our 
translator and support all the ANSI C syntaxes in the translation 
without any rewritten requirement. The GCC2Verilog directly 
translates the final version of GCC’s IR, that is, register transfer 
language (RTL), into synthesizable Verilog code, right before 
the RTL code is translated into assembly code. Additionally, to 
support unlimited nesting cross calls between software and 
hardware and even recursive calls in hardware, the 
GCC2Verilog compiler generates the hardware codes to have a 
stack and to follow a host processor’s linkage convention. For 
our execution framework, we used the processor in interactive 
play with compiler (PICO) [17] as the host processor which is 
an in-house one-way in-order embedded microprocessor and 
has comparable performance with ARM9. The interface of 
PICO was optimized to enable very low communication 
overhead with HW intellectual properties (HWIPs) in FPGA, 
which are automatically generated from C by our compiler 
system. Our experiment shows that we could achieve a 
speedup of up to 34 times and 17 times on average with 4-port 
memory over the PICO microprocessor execution in selected 
EEMBC benchmarks. 

Our paper provides three main contributions: i) proof that an 
existing HLL compiler system such as GCC is a good 
infrastructure to build an HLL-to-HDL translator with very 
insignificant implementation effort; ii) a presentation of a 
detailed implementation of translation from GCC’s RTL into 

Verilog language and the method to support all kinds of C 
language features; and iii) a demonstration that such a compiler 
system can achieve good performance in the translated HW 
codes.  

The rest of this paper is organized as follows. Our related 
work is discussed in section II. Section III explains our 
compilation and execution environment. Section IV presents 
the implementation of the GCC2Verilog compiler. Section V 
describes the Verilog code generation in detail. We evaluate the 
performance of our compiler system in section VI. Finally, we 
make conclusion in section VII. 

II. Related Work 

Many researches employing different approaches have 
worked on the HLL-to-HDL translation to overcome the gap 
between hardware and software programming concepts. Some 
research, instead of supporting the commonly used HLL, used 
an approach to define new HLL-like languages which contain 
a subset of common HLL constructs with some extension to 
control hardware instantiation and to support parallelism. For 
example, Impulse-C [5], Handel-C [8], and Transmogrifier C 
[18] belong to this category. However, many common HLL 
programming concepts, such as pointers, structures, recursive 
function calls, and irregular control statements, are not allowed 
in these languages. Also, the languages are unfamiliar to most 
of HLL programmers because of the requirement of hardware 
design understanding.  

Other researchers have tried to use only a subset of particular 
high-level languages (normally C/C++) for HDL translation [6], 
[7], [11]-[13], [19]. Mentor Graphics’ Catapult C [19] performs 
behavioral synthesis from a strict ANSI C++ subset, that is, 
C++ programs should be written in a synthesizable C++ style. 
Pointers must be statically determined, and therefore memory 
(de)allocation is not supported. Similarly, the Spark project [6] 
implemented the C to VHDL translator without supporting 
common C constructs like pointers, 2D arrays, or irregular 
control statements. However, even with the supporting code 
types completely rewriting source codes is necessary to make 
them efficiently translated [7], [20]. An empirical comparison 
on automation capacity of several common HLL-to-HDL 
translators, such as Spark [6], ROCCC [7], and DWARV [13], 
was presented in [10]. The translators were evaluated 
qualitatively in terms of the supported ANSI C subsets, 
restrictions required on the subsets, the rewritten effort needed 
to make existing C codes compliant with each translator, the 
requirement of HW knowledge, and the tools’ testability and 
readability. The results showed that these translators supported 
only 51% to 63% of the C language features; the restricted 
syntaxes in input codes include a lot of commonly used data  
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Fig. 1. GCC2Verilog’s compilation flow and execution framework. 
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types (float, structure, union), operators (field selection, object 
address operator), control statements (while-loop, break, 
continue, goto), and even function calls [10]. Also, there were 
many additional restrictions in use of the supported syntaxes. 
For example, the ROCCC compiler requires that for-loops 
must be perfectly nested, the indices of arrays used inside a 
loop must be equal to a loop counter, and the number of 
iterations must be equal to the number of elements of an output 
array. These restrictions make the translators far from 
convenient tools for software programmers. 

Overall, pointers and function calls are the most difficult 
syntaxes to be translated into hardware. In [21], in order to 
support pointers, the authors first declared a universal memory, 
and partitioned the memory which each variable refers by 
applying pointer analysis. The pointers were then synthesized 
by encoding their values and generating circuits to dynamically 
access locations they may reference. However, a pointer cannot 
contain the address of a dynamically allocated memory whose 
size is unknown at compile time. For function call, the 
HybridThreads [22] and ASH [15] allowed function calls 
inside hardware code, but it could not support a cross call from 
hardware back to software. 

III. Compilation and Execution Framework 

The overview of our compilation and execution framework 
is shown in Fig. 1, which consists of three phases: code 
preparation, compilation, and execution. Our framework 
translates C code at procedure granularity into Verilog modules, 
that is, function-by-function. For the translation, a programmer 
needs to identify a function name and its containing source file 
name in a project description file at the code preparation phase. 
An example of the project description file is shown in Fig. 1, in 
which sum function in test.c source file will be translated into 
Verilog code. The subroutine form in C allows each HWIP to 
have its own stack space, which supports seamless cross calls 

between software and hardware. Also, if there is constraint on 
the number of available registers, we can spill their values onto 
the stack like an HLL compiler.  

The compilation phase consists of three steps: software 
compilation, C-to-Verilog translation, and hardware synthesizing. 

 
• Software compilation: The GCC compiler of a host 

processor (the GCC PICO compiler) compiles an entire 
input source code, that is, software and hardware codes 
together, for the software execution in order to share 
addresses of data and instructions with hardware, that is, 
automatic address resolution in software with hardware. 
Even though hardware functions are not executed in a 
microprocessor, they should be included in the software 
executable code. Otherwise, some software functions 
accessed by the hardware may be excluded from the 
executable code by GCC’s optimization. For example, the 
printf library function in Fig. 1 is used only from the 
hardware sum function but not from any software function. 
The printf will be excluded from the executable code by a 
software linker. Therefore, when hardware calls printf for 
its software execution, the target function cannot be found.  

• C-to-Verilog translation: Our GCC2Verilog compiler 
translates the registered functions in the project description 
file into synthesizable Verilog codes. The hardware 
compilation needs two inputs, a symbol table and a 
linking log file from the software compilation in order to 
perform software address resolution, which will be 
explained in the next section. The software codes and the 
generated hardware codes follow the same linkage 
convention for efficient cross calls between them.  

• Hardware synthesizing: The generated Verilog code is 
synthesized by the FPGA compiler into hardware 
bitstreams; hardware functions become configured 
hardware IPs on FPGA while the executable code 
including software functions runs on the PICO processor.  
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Fig. 2. GCC2Verilog infrastructure with GCC’s front-end, 
middle-end, and FPGA backend with additional
components (colored ones) for Verilog code generation.
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At the execution phase, software and hardware codes 
communicate with each other through function calls, and they 
use the same memory hierarchy since they use one address 
space. In the current implementation, the PICO processor and 
HWIPs are not concurrently executed; therefore, we do not 
need to consider the memory coherence problem. 

IV. GCC2Verilog Implementation 

1. Configuring FPGA Backend 

The GCC2Verilog was implemented as a GCC’s cross 
compiler by adding a new FPGA target machine and an RTL-
to-Verilog code generator. Figure 2 shows the additional 
components of GCC2Verilog attached to the conventional 
GCC infrastructure to perform the Verilog code translation. 
The configuration of FPGA target was used during the RTL 
code optimization passes and the code generation. After 
performing all optimizations specific to the FPGA backend, the 
final RTL code was passed to the RTL-to-Verilog translator 
which consists of the HW instruction scheduler and the Verilog 
code generator.  

GCC is a multitarget compiler, and therefore the work of 
porting a new target backend can be done very easily. The 
FPGA targeted machine was assumed as a twenty-way in-
order microprocessor with plenty of registers. The number of 

execution ways and registers are redundantly defined so that 
the compiler can aggressively optimize the code for the best 
performance, that is, exploiting higher instruction-level 
parallelism. The number of functional units and registers 
actually used in an HWIP generated from the GCC2Verilog 
compiler is dependent on the application’s characteristics. The 
number of used registers is minimized by register allocation in 
the GCC pass. Also, we have a lot of flexibilities in code 
generation when comparing a traditional microprocessor 
backend since there is no constraint in designing the instruction 
set architecture (ISA) of the FPGA target (or Verilog backend). 
For example, in order to reduce intermediate operations, that is, 
reduce the number of instructions, we tried to combine add/sub, 
logical, and shifts operations since these operators can be 
executed together in one clock cycle due to their short 
execution latency. The following instructions are some 
examples: (a + b) >> d, a + b –c, (a & b) << d, and a – (b ̂  d). 

2. Utilizing the GCC’s RTL for Verilog Code Translation 

The GCC’s RTL intermediate representation (IR) can be 
easily used for HDL code generation. An RTL instruction is 
constructed with a 3-address form to describe a functional unit 
and its operands (stored in registers or memory) for execution 
on a target machine [23], and therefore, the IR can be easily 
mapped to Verilog expression. The GCC2Verilog utilizes the 
GCC’s last RTL version, right before it is translated into 
assembler code, as input of the Verilog code translation. 
Therefore, we can take advantage of rich optimization 
techniques in GCC such as deadcode elimination, constant 
propagation, and loop unrolling. In GCC’s RTL IR, all accesses 
to C complex data types such as pointers and structures are 
converted into simple memory accesses; all complex control 
statements are lowered to jump instructions. So, the 
burdensome problems of supporting pointers, irregular control 
statement, and complex data types of other HLL to HDL 
translation researches are naturally resolved. 

We applied the finite state machine (FSM) model to the 
generated Verilog code so that it preserves the software 
execution order while exploiting concurrency in hardware 
execution. A function’s RTL sequences are divided into 
several FSM states by considering control dependence, data 
dependence, and memory constraint, that is, the number of 
allowed concurrent memory accesses, and they are scheduled 
at compilation time, that is, statically by the HW instruction 
scheduler in Fig. 2. A state of the FSM represents an 
execution of one clock cycle. Every arithmetic instruction 
also takes only one cycle in the hardware, and independent 
instructions are wrapped within one FSM state for parallelism 
exploitation. Some instructions such as function calls and  
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Table 1. Examples of PICO assembler code and corresponding generated Verilog code of GCC2Verilog translator. 

Verilog code 
Operations PICO assembler  

Datapath Control unit 

Addition add3 $r0, $r2, $r8 reg0 <= reg2 + reg8;  
Multiplication mult3 $r0, $r2, $r8 reg0 <= reg2 * reg8;  

Shift left asli $r3, #1 reg3 <= reg3 <<< 1;  

Memory load ld.w $r2, $r5 

always@(posedge clk or negedge reset)
if(!mem_stall) begin 
  read <= 0; 
  case (pc) 

  0: begin 
    addr <= reg5; 
    read <= 1’b1; be <= 4’b1111; 
  end 
  1: reg4 <= rdata; 
  … 
endcase 

end 

always@(*) 
if(!mem_stall) 
case (pc) 

0: nx_pc <= 1; 
1: nx_pc <= 2; 
… 

endcase 
always@(posedge clk or negedge reset) 
begin 
…. 
  pc <= mem_stall ? pc : nx_pc; 
end 

Conditional branch 
cmpi $r2, 9 

blt.L7 

 assign successor = (reg2 <= 9); 
always@(*) 
if(!mem_stall) 
case(pc)… 
  x: nx_pc <= successor ? dest1 : dest0;
endcase 

 

Table 2. Example of code generation using one and two memory
ports of FPGA backend. 

Generated Verilog code 
Assembly code 

One-port memory Dual-port memory 
1. rsh $r7, #2 
2. st.w ($r8+4), $r7 
3. ld.w $r4, ($r0) 
4. add3 $r0, $r8, $r0 
5. mult $r7, $r3, $r3 

case (pc) 
 0: begin 

reg7 <= reg7 >> 2; 
addr <= reg8 + 4; 
write <= 1’b1; 
be <= 4’b1111; 
pc <= 1; 

 end 
 1: begin 

wdata <= reg7; 
addr <= reg0; 
read <= 1’b1; 
be  <= 4’b1111; 
reg0 <= reg8 + reg0; 
reg7 <= reg3 * reg3; 
pc <= 2; 

 end 
2: reg4 <= rdata; 
 … 
endcase 

case (pc) 
 0: begin 

reg7 <= reg7 >> 2;
addr0 <= reg8 + 4; 
write0 <= 1’b1; 
be0 <= 4’b1111; 
addr1 <= reg0; 
read1 <= 1’b1; 
be1  <= 4’b1111; 
reg0 <= reg8 + reg0;
pc <= 1; 

 end 
 1: begin 

wdata0 <= reg7; 
reg7 <= reg3 * reg3;

  reg4 <= rdata1; 
pc <= 2; 

end 
… 
endcase 

 

memory operations take several cycles; they are executed in 
several continuous FSM states. Table 1 compares some 

PICO’s assembler instructions with the corresponding 
generated Verilog codes. The Verilog codes for common 
arithmetic and logical operations are similar to the PICO 
assembly codes. The load instruction is executed in two FSM 
states: the first state issues a memory service with an address 
(addr) and control signals (be, read), and the second state 
checks the readiness of the read data and writes the data into a 
register (reg4 <= rdata). 

Table 2 shows the details of memory instruction scheduling.  
Instructions 2 and 3 are independent, but they are serialized if 
one-port memory is used. The hardware instruction scheduler 
divides one memory RTL into two FSM states and reschedules 
them for exploiting higher instruction level parallelism (ILP). 
Instruction 2 is truly dependent on instruction 1; however, 
instruction 2’s Verilog code for memory address preparation 
and control handling are independent on instruction 1; 
therefore, these Verilog statements can be executed together 
with instruction 1 at the same state. 

Our compiler can generate the Verilog code from any C code. 
Therefore, we can also translate codes to contain dynamic 
pointers or memory management functions like malloc into 
Verilog without any limitation. However, we did not try to 
translate the functions into hardware due to execution in 
efficiency since the memory management is better performed 
by OS. The memory allocation is done by SW, that is, OS, and 
then the allocated memory address is shared by HW through 
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the HW and SW calling method in [24]. The memory 
deallocation is done in the similar way. We also did not 
implement floating-point functional units inside FPGA due to 
resource issue; whenever a floating-point operation needs to be 
performed, the GCC2Verilog calls a library function of GCC 
(libgcc) in software. The non-blocking assignment (<=) is used 
in the generated Verilog code to avoid any kind of race 
condition. In this paper, we focus only on the C to Verilog 
translation, but with only minor changes, our compiler system 
is able to support translation of other HLLs supported by GCC, 
such as FORTRAN, C++, and Java, into Verilog. 

3. Address Resolution between Hardware and Software 

Since only one address space is used for both software codes 
and hardware codes, addresses of global variables as well as 
target/return addresses of software and hardware functions 
should be shared between their codes. In order to perform a call, 
a caller must know a callee’s address in software or hardware. 
Also, the callee should know the return address of the caller for 
correctly restoring the caller’s execution. However, in case of a 
cross call (SW calls HW or HW calls SW), the hardware does 
not know addresses in software and vice versa because they are 
separately compiled. Therefore, we need to resolve the 
software addresses for hardware execution and hardware 
addresses for software execution. 

The hardware address resolution is done by assigning a 
unique hardware identification number (HWID) to each 
hardware function at the compilation phase; this work is 
automatically done by the PICO and GCC2Verilog compilers. 
The HWID is considered as an access point to a hardware 
function, since the hardware does not use addresses like in the 
software. A software function will use the HWID to call a 
function in hardware. When an HWIP performs a function call, 
its HWID and its currently executing state are combined to 
make a return address for the callee. 

In this paper, we only consider the software address 
resolution in case that the software code is statically linked, 
which is the common case in embedded systems. As shown 
in Fig. 1, the software and hardware compilation should be 
tightly coupled; the hardware compilation uses two results 
from the software compilation process: a symbol table and a 
linking log file. The symbol table file is extracted from the 
executable code generated by the software compilation. The 
table contains address information of all global/static 
variables as well as software function addresses. The linking 
log file is used to resolve addresses of software constant data. 
If a constant like the (“sum =%d”) string in Fig. 1 is not 
declared as a variable, its address will not appear in the 
symbol table. Since only a linker knows the addresses of 

constant data, we modified the GNU linker to print out the 
size and offset information of constant data in object files to 
the linking log file so that GCC2Verilog can use it to calculate 
the data addresses. Using the linking log file and the symbol 
table file as inputs, the hardware compilation can resolve all 
kind of addresses in software as if it is linked with software 
code. For the address resolution when the software is 
dynamically linked, we can apply the same method as 
described in [24.  

V. Verilog Code Generation 

One HWIP generated by the GCC2Verilog compiler consists 
of one datapath and one control unit. The control unit performs 
the FSM state transition based on control flow and interaction 
with other components (PICO, other HWIPs or the memory). 
The control unit controls the datapath execution through a state 
variable (pc) which is similar as a program counter in a 
microprocessor. The datapath is generated from RTL 
instructions and performs the calculation of an HWIP. 

Figure 3 shows an example of how the C function is 
translated into Verilog code using our compiler system. In Fig. 
3(a), the example C code contains a calculate() hardware 
function, which is called from the main function in software. 
The HW function uses three pointer variables: history, 
coefficient, and Out whose contents are dynamically allocated 
at runtime by the main function. In general, the code containing 
dynamic allocated pointers like this cannot be supported by 
other HLL-to-HDL translators; however, it is no longer a 
problem in our approach. The memory is allocated in software, 
and the allocated address can be loaded from its pointer address 
obtained through software address resolution. The HW 
function’s RTL code contains four basic blocks (BBs), and they 
are numbered from 2 to 5. The control flow between BBs and 
the FSM states contained within each BB are shown in Fig. 
3(b); a start and a finish state are inserted at the beginning and 
the end of the function. A control unit and a datapath of the 
translated Verilog code are shown in Figs. 3(c) and 3(d), 
respectively. In this example, the datapath uses 2-port memory. 

1. Code Generation for Datapath 

The HW instruction scheduler of GCC2Verilog divides the 
RTL sequence within a BB into FSM states based on data 
dependences as well as resource constraint between 
instructions so that independent statements are grouped into 
one FSM state.  

The communication between software functions and 
GCC2Verilog generating HWIPs follows the PICO’s calling 
convention. Therefore, an HWIP gets its input arguments  
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Fig. 3. GCC2Verilog’s code generation method: (a) C code, (b) RTL control flow of calculate HW function, (c) control unit, and (d)
datapath of generated Verilog module. 
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Void calculate (int bound, int* coefficient, int scale){ 

int i, signalOut, *his=history; 
int *out=Out; 
for(i=0; i<bound;i++){ 

signalOut=(int)((*coefficient--)*(his++)); 
signalOut+=1<<(scale–1) 
signalOut>>=scale; 
*out++signalOut; 

} 
} 
int main(void){ 

int*coef=(int*) malloc (SIZE*sizeof(int)); 
Out=(int*) malloc (SIZE*sizeof(int)); 
history=(int*)malloc(SIZE*sizeof(int)); 
calculate(SIZE, coef, SCALE); 

.. 
} 

BB 3

BB 4

BB 5

BB 2

End

Start

State 11 

State 12 

State 13  

(a)

assign successor[2]=(reg12<=0); 
assign successor[4]=(reg14!=reg12); 
assign finis=(pc==14); 

always @* 
if(!mem_stall) 

case(pc) 
0:nx_pc=1; 
1:nx_pc=2; 
2:nx_pc=successor[2]?11:3; 
3:nx_pc=4; 
4:nx_pc=5; 
5:nx_pc=6; 
6:nx_pc=7; 
7:nx_pc=8; 
8:nx_pc=9; 
9:nx_pc=10; 

10:nx_pc=successor[4]?6:11; 
11:nx_pc=12; 
12:nx_pc=13; 
13:nx_pc=14; 
14:nx_pc=15; 
15:nx_pc=15; 
default:nx_pc=pc; 

endcase 

always @(posedge clk or negedge reset) 
if(~reset) pc=16’hffff; 
else if(enable) 

pc<=0; 
else pc<=mem_stall?pc:nx_pc; 

BB 2

BB 3

BB 4

BB 5

always@(posedge clk or negedge reset) 
.. 
if(~mem_stall) begin 

write0 <=1’b0; read0 <=1’b0; 
write1 <=1’b0; read1 <=1’b0; 
case(pc) 

1:begin 
addr0 <=SP–4; 
write0 <=1’b1; be0 <=4’b1111; 

end 
2:begin 

wada0 <=reg0; SP<= SP–8; 
end 
3:begin 

addr0 <=32’hbb8;//Out ptr 
read0 <=1’b1; be0 <=4’b1111; 
addr1 <=SP+20; 
read1<=1’b1; be1 <=4’b1111; 
reg14 <=0; 

end 
4:begin 

reg11 <=rdata0; // Out value 
reg23 <=rdata1; // scale 
addr0 <=32’hbb4; // history ptr 
read0 <=1’b1; be0 <= 4’b1111; 

end 
5:begin 

reg9 <=rdata0;//history value 
reg15 <=1 <<<(reg23–1); 

end 
6:begin 

addr0 <=(reg9); //history 
read0 <=1’b1; be0 <=4’b1111; 
addr1 <=(reg13); // coefficient 
read1 <=1’b1; be1 <=4’b1111; 
reg14 <=reg14+1; 
reg13 <=reg13–4; 
reg9 <=reg9+4; 

end 
7:begin 

reg8 <=rdata0; reg7 <= rdata1; 
end 
8:begin 

reg7 <=reg8*reg7; 
addr0 <=(reg11); // Out 
write0 <=1’b1;  be0 <=4’b1111; 

end 
9:begin 

wdata0 <=(reg7+reg15)>>reg23; 
reg11 <=reg11+4; 

end 
11:SP <=SP+8; 
12:begin 

addr0 <=SP–4; 
write0 <=1’b1; be0 <=4’b1111; 

end 
13:reg0 <=rdata0; 

endcase 

(b) 

(c) 
(d) 

 
through argument registers and a shared stack space with the 
software. At the entry block, an HWIP pushes a link register 
(reg0) to the stack. If any caller-saved registers are used inside 
the HWIP, these registers are also pushed to the stack. After 
that a stack pointer value is adjusted as shown in state 2. 
Through the SW address resolution, the hardware knows that 
the addresses of Out and history are 0xbb8 and 0xbb4, 
respectively. At BB 3, the addresses pointed by Out and history 
are loaded into reg11 at state 3 and 4 and reg9 at state 4 and 5, 
respectively. The first two arguments of the calculate function 

(bound and coefficient) are passed to the HWIP through 
argument registers, reg12 and reg13; the third argument (scale) 
is passed through a stack. At state 3 of the FSM, the scale 
argument is also loaded into reg23 from the stack address 
(SP+20). The BB 4 performs the main loop execution: loading 
elements of the array pointed by history and coefficient, 
calculating a value, and writing the value to the memory 
addresses pointed by Out. Finally, the stack pointer SP is 
restored, and the link register is popped at the exit of BB 5. In 
hardware, since an arithmetic instruction takes only one clock  
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Table 3. Description of translated code in EEMBC benchmarks. 

Benchmark HW functions Called SW functions Inlined Line Unroll Time (%)

aifirf t_run_test 
th_malloc_x (malloc), GetTestData, th_signal_start, 

th_exit (exit), GetInputValues, calc_crc32, 
th_signal_finished 

WriteOut 422 3 100 

idctrn 
t_run_test, 

GetInputValues 
th_malloc_x (malloc), GetTestData, th_signal_start, cos, 

calc_crc32, th_exit (exit), th_signal_finished 
WriteOut, 

unPack 630, 20 8 100 

autcor fxpAutoCorrelation   20 32 99 

conven convolutionalEncode   45 4 98 

fft fxpfft assert  102 2 98 

bezier interpolatePoints  paramatric 55 4 99 

dither ditherImage memset  115 4 99 

rgbhpg t_run_test th_signal_start, th_signal_finished, calc_crc8  94 16 100 

rgbyiq t_run_test 
th_signal_start, th_signal_finished, th_printf (printf), 

th_malloc_x (malloc), calc_crc8, th_exit (exit)  132 12 100 

 

cycle and the non-blocking assignment is used, we can ignore 
the anti-dependency among them. For example, at state 6 of 
Fig. 3(d), the reg9 is read by the (addr0 <= reg9) instruction 
and updated by the (reg9 <= reg9 + 4) instruction, but the two 
instructions still can be executed within one FSM state. 

2. Code Generation for Control Unit 

The control unit of HWIP is implemented with two Verilog 
always blocks as shown in Fig. 3(c). One always block (top in 
Fig. 3(c)) specifies the next state (nx_pc) statically, and the 
other block (bottom in Fig. 3(c)) determines the next state 
dynamically, that is, take a current state or the next state. The 
state transition is decided based on the HW function’s internal 
control flow, control signals from other HWIPs or PICO, and 
ready signals from memory. An HWIP starts when it receives 
an enable control signal, and stops when it reaches an ending 
state.  

Almost all RTL instructions are executed by the datapath 
except comparison and jump instructions. A jump instruction 
changes the control flow among BBs, which means changing 
the state variable (pc), so it is implemented in the control unit 
instead of the datapath. A compare instruction is also excluded 
from the datapath due to the similar reason. The 
implementation of a branch at state 2 of Fig. 3(c) can be 
explained as the comparison instruction checking the branch 
condition implemented as a statement (assign successor[2] = 
(reg12 <= 0)). The successor[3] signal is then used to perform 
the jump instruction: (2: nx_pc = successor[2] ? 11 : 3). 

A state transition is performed if and only if the memory is 
not busy, that is, a mem_stall signal sent from the memory is 
not set. The condition ensures that if an FSM state containing 

memory instructions, the FSM cannot change to another state 
before the memory instructions finish (pc <= mem_stall ?  
pc : nx_pc), so that ensuring the correctness of the program. At 
the end of the function, the control unit announces its finish 
status to its caller by setting a finish signal (assign finish = 
(pc==14)). After that the HWIP is stalled (15: nx_pc = 15). 

VI. Performance Evaluation 

In order to evaluate the quality of our generated Verilog code, 
we used several EEMBC benchmarks [25]. We simulated the 
Verilog code with the PICO microprocessor on the ModelSim 
[26] simulator. Also, we used 1, 2, 4, and 8-port memory 
access configurations for performance evaluation since the 
number of concurrent memory accesses affects the overall 
performance significantly. 

Table 3 describes in detail the selected codes. The HW 
functions column lists functions which are translated into 
Verilog by our GCC2Verilog. The Called SW functions 
column names the SW functions called by functions in the HW 
functions column. The inlined functions column lists functions 
that are inlined within the HW functions, and the Lines shows 
the number of C code lines of each HW function (including the 
codes of inlined functions). To exploit ILP, we applied the loop 
unrolling to the benchmarks; the number of unrolling times 
was selected for the best performance and it is shown in Unroll 
column. Both the GCC2Verilog and the PICO compiler were 
implemented based on the GCC version 4.2.2 [16]. All codes 
were compiled with –O3.  

Figure 4 shows the speedup of PICO+HWIP execution with 
respect to the PICO-only execution when using 1, 2, 4 or 8-port 
memory. The speedup gain by PICO+HWIP is 8, 12, 17, and  
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Fig. 4. Speedup of PICO+HWIPs execution with respect to
PICO-only. 
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21 times on average, respectively. The measured execution 
time of each benchmark is started from th_signal_start() to 
th_signal_finished() functions; the two functions are called 
within the t_run_test() function; this is the standard time 
measurement of EEMBC. The ratios of the execution time of 
translated functions in HW functions column and their callees 
to the total execution time are shown in the time column of 
Table 3. The speedup includes the communication overhead 
between PICO and HWIPs. We used the approach in [24] for 
the communication between the PICO and HWIPs. However, 
the PICO’s interface and ISA were optimized so that the SW 
can call to HW with one machine instruction. Therefore, the 
calling overhead is very insignificant and almost does not affect 
the final performance. 

In memory intensive benchmarks such as autcor, rgbhpg, 
and rgbyiq, the speedup is nearly proportionally increased 
when the number of memory ports is increased. The speedup 
on aifirf, fft, and conven benchmarks is less significant because 
loops inside the benchmarks are small, not computation 
intensive, or containing only few numbers of iterations.  

The performance of the Verilog code translated from 
machine RTL is still unimpressive because the instruction 
parallelism in RTL is limited. However, we have not yet aimed 
at the high performance from exploiting various levels of 
parallelism like in many previous works [2]-[5],[7],[15],[19], 
but focused on supporting a complete, unmodified translation 
of a high level language into Verilog with acceptable code 
quality as the first step of our research. We believe that the 
parallelism exploitation in FPGA would be similar to or same 
as the SW parallelism. Therefore, several techniques which are 
already available in the GCC compiler for higher parallelism 
exploitation, such as aggressive instruction scheduling for 
wide-issue superscalar processors and VLIW machines, 
predicate execution, or the OpenMP for multithread execution, 
can be applied to improve the quality of our code 
generation. However, since the FPGA target has some 
advantages over microprocessors. The FPGA is not limited to 

predefined instruction set architectures or fixed number of 
functional units and registers, etc. Our GCC2Verilog may have 
more opportunities than general SW compilers in optimizing 
code and exploiting parallelism. 

VII. Conclusion 

The translation of HLL into HDL for hardware design has 
not been fully supported due to the large difference between 
software and hardware programming concepts. This paper 
proposed a novel approach to build an HLL-to-HDL translator, 
called the GCC2Verilog compiler based on the commonly 
used GCC compiler toolsets. By taking the approach, we could 
reduce the implementation effort and resolve all syntax issues 
in the translation while providing high performance at the same 
time. We fully described the method to translate RTL into 
Verilog code and introduced a complete address resolution 
method between software and hardware. To the best of our 
knowledge, our work is the first attempt of making a compiler 
system and its execution framework which supports the 
complete translation of C language into the Verilog HDL. Our 
GCC2Verilog is a cross compiler of GCC, which targets the 
FPGA instead of microprocessor architectures. We verified the 
compiler code generation with several EEMBC benchmarks 
which have complex use of pointers and function calls. The 
achieved speedup was up to 34 times and 17 times on average 
with 4-port memory system with respect to the PICO 
microprocessor.  

Even though our system delivers good performance, we 
need to resolve two main issues. One is to optimize the 
memory access to achieve good performance even with limited 
number of memory ports. The other problem is how to support 
dynamic program execution status in hardware codes like an 
overflow detection of a signed integer addition in a 
microprocessor. We leave these issues for our future work. 
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