Acknowledgement
Supported by : 연구재단
References
- Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles E, Qian Q,Kitano H, Matsuoka M. 2005. Cytokinin oxidase regulates rice grain production. Science 309:741-745. https://doi.org/10.1126/science.1113373
- Barry MB, Pham JL, Noyer AJL, Billot AC, Courtois AB, Ahmad AN. 2007. Genetic diversity of the two cultivated rice species (O. sativa and O. glaberrima) in Maritime Guinea. Evidence for interspecifc recombination. Euphytica 154:127-137. https://doi.org/10.1007/s10681-006-9278-1
- Causse MA, Fulton TM, Cho YG, Ahn SN, Chunwongse J, Wu K, Xiao J, Yu Z, Ronald PC, Harrington SC, Second G, McCouch SR, Tanksley SD. 1994. Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics 138:1251-1274.
- Fan C, Xing YZ, Mao HL, Lu TT, Han B, Xu C, Li XH, and Zhang Q. 2006. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor. Appl. Genet. 112:1164-1171. https://doi.org/10.1007/s00122-006-0218-1
- Foyer CH. 1987. The basis for source-sink interaction in leaves. Plant Physiol. Biochem. 25:649-657.
- Harlan J. 1992. Crops & Man. American Society of Agronomy/Crop Science Society of America, Madison, WI, pp. 295.
- Hirota O, Oka M, Takeda T. 1990. Sink activity estimation by sink size and dry matter increase during the ripening stage of barley and rice. Ann. Bot. 65:349-354.
- Jones MP, Mande S, Aluko K. 1997. Diversity and potential of Oryza glaberrima Steud. in upland rice breeding. Breed. Sci. 47:395-398.
- Kang JW, Suh JP, Kim DM, Oh CS, Oh JM, Ahn SN. 2008. QTL mapping of agronomic traits in an advanced backcross population from a cross between Oryza sativa L. cv. Milyang 23 and O. glaberrima. Korean J. Breed 40:243-249.
- Li C, Zhou A, Sang T. 2006. Genetic analysis of rice domestication syndromewith the wild annual species, Oryza nivara. New Phytologist 170:185-194. https://doi.org/10.1111/j.1469-8137.2005.01647.x
- Li F, Liu FH, Morinaga D, Zhao Z. 2011. A new gene for hybrid sterility from a cross between Oryza sativa and O. glaberrima. Plant Breeding 130:165-171. https://doi.org/10.1111/j.1439-0523.2010.01845.x
- Li J, Thomson M, McCouch SR. 2004. Fine mapping of a grain-wieght quantitative trait locus in the pericentromeric region of rice chromosome 3. Genetics 168:2187-2195 https://doi.org/10.1534/genetics.104.034165
- McCouch SR, Cho YG, Yano M, Paul E, Blinstrub M, Morishima H, Kinosita T. 1997. Report on QTL mnomenclature. Rice Genet. Newslett. Vol 14:11-13.
- McCouch SR, Teytelman L, Xu Y, Lobos KB, Clare K, Walton M, Fu B, Maghirang R, Li Z, Xing Y et al. 2002. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res. 9:199-207. https://doi.org/10.1093/dnares/9.6.199
- Panaud O, Chen X, and McCouch SR. 1996. Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativa L.). Mol. Gen. Genet. 252:597-607.
- Sahrawat KL, Sitka M. 2002. Comparative tolerance of O. sativa and O. glaberrima rice cultivars for iron toxicity in West Africa. Int. Rice. Res. Notes 27:30-31.
- Sarla, N. and B.P.M. Swamy. 2005. Oryza glaberrima: A source for the improvement of O. sativa. Curr. Sci. 89:955-963.
- Shim RA, Angeles ER, Ashikari M, Takashi T. 2010. Development and evaluation of Oryza glaberrima Steud. Chromosome segment substitution lines (CSSLs) in the background of O. sativa L. cv. Koshihikari. Breeding Sci. 60:613-619. https://doi.org/10.1270/jsbbs.60.613
- Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, and Yano M. 2008. Deletion in a gene associated with grain size increased yields during rice domestication. Nature Genet. Doi:10.1038/ng.169.
- Song XJ, Huang W, Shi M, Zhu MZ, and Lin HX. 2007. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat. Genet. 39:623-630. https://doi.org/10.1038/ng2014
- Suh JP, Ahn SN, Cho YC, Suh HS, Hwang HG. 2005. Mapping of QTLs for Yield Traits Using an Advanced Backcross Population from a Cross between Oryza sativa and O. glaberrima. Korean J. Breed 37(4):214-220.
- Thomson M J, Tai TH, McClung AM, Lai XH, Hinga ME, Lobos KB, Xu Y, Martinez CP, McCouch SR. 2003. Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa culivar Jefferson. Theor Appl Genet 107:479-493. https://doi.org/10.1007/s00122-003-1270-8
-
Xie X, Jin F, Song MH, Suh JP, Hwang HG, Kim YG, McCouch SR, Ahn SN. 2008. Fine mapping of a yield-enhancing QTL cluster associated with transgressive variation in an Oryza sativa
${\times}$ O. rufipogon cross. Theor. Appl. Genet. 116:613-622. https://doi.org/10.1007/s00122-007-0695-x - Xing YZ, Tang WJ, Xue WY, Xu CG, Zhang Q. 2008. Fine mapping of a major quantitative trait loci, qSPP7, controlling the number of spikeletsper panicle as a single Mendelian factor in rice. Theor. Appl. Genet. 116:789-796. https://doi.org/10.1007/s00122-008-0711-9
- Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T. 2000. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 12:2473-2483.