Mapping Grain Weight QTL using Near Isogenic Lines from an Interspecific Cross

벼 종간잡종 유래 근동질 유전자계통 이용 종자중 관여 유전자 분석

  • Kang, Ju-Won (Department of Agronomy, Chungnam National University) ;
  • Yang, Paul (Department of Agronomy, Chungnam National University) ;
  • Yun, Yeo-Tae (Chungnam Agricultural Research and Extension Services) ;
  • Ahn, Sang-Nag (Department of Agronomy, Chungnam National University)
  • 강주원 (충남대학교 농업생명과학대학 농학과) ;
  • 양바오로 (충남대학교 농업생명과학대학 농학과) ;
  • 윤여태 (충남 예산군 충청남도농업기술원) ;
  • 안상낙 (충남대학교 농업생명과학대학 농학과)
  • Received : 2011.05.09
  • Published : 2011.09.30

Abstract

In previous studies, we reported QTLs for grain weight (GW), qGW3 and for spikelets per panicle (SPP), qSPP3 linked to RM60 on chromosome 3 using advanced backcross lines derived from a cross between Oryza sativa ssp. Indica cv. Milyang 23 and O. glaberrima. The O. glaberrima alleles at this locus increased GW and spikelets per panicle in the Milyang 23 background. To further confirm and narrow down the position of the QTLs on chromosome 3, substitution mapping was performed using five lines containing the target O. glaberrima segment on chromosome 3. The size and position of the O. glaberrima segment on chromosome 3 were different in each line. These lines possessed 3-10 non-target O. glaberrima introgressions in the Milyang 23 background. These five lines were evaluated for seven agronomic traits including 1,000 grain weight and spikelets per panicle and also genotyped with seven SSR markers. Four lines were informative in delimiting the position of QTLs, qGW3 and qSPP3. Two lines with the O. glaberrima segment flanked by SSR markers, RM60 and RM523 displayed significantly higher values than Milyang 23 in GW and SPP whereas two lines without that O. glaberrima segment displayed no difference in GW and SPP compared to Milyang 23. The result indicates that two QTL, qGW3 and qSPP3 are located in the interval between RM60 and RM523 which are 1.2-Mb apart. Introgression lines having QTLs, qGW3 and qSPP3 would be useful materials not only to indentify the relationship between these two yield QTLs, but also to develop high yielding variety via marker-aided selection technology.

1. 선행 연구에서 염색체 3번의 RM60~RM231 부근에서 종자중, 수당립수에 관여하는 QTL이 탐지되었고, 이를 확인하기 위하여 이 지역에 크기와 위치가 다른 O. glaberrima 단편이 이입된 5 계통을 선발하여 표현형을 조사하였다. 실험 결과 계통별로 출수기, 임실률, 수당립수, 종자중을 제외한 형태적 특성들이 밀양23호와 비슷한 양상을 보였다. 이는 대부분의 염색체 지역이 밀양23호로 회복되었기 때문이라고 보여진다. 2. 유전자의 위치를 자세히 알기 위해 RM60과 RM22 부위에 위치하는 SSR 마커를 이용하여 5개 계통의 유전자형을 검정하였다. 종자중과 수당립수에서 차이를 보이는 4계통, IL3, IL26, IL25와 IL51을 비교한 결과 종자중과 수당립수를 조절하는 유전자는 RM60-RM523 사이의 재조환 지점과 단완 끝 부분 사이에 위치하는 것으로 판단되며 그 거리는 약 1.2-Mb이다. 3. 본 연구에서 탐지된 연관된 종자중과 수당립수 QTL은 재배벼의 수량성 증진에 효과적으로 이용될 수 있을 것으로 판단된다.

Keywords

Acknowledgement

Supported by : 연구재단

References

  1. Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles E, Qian Q,Kitano H, Matsuoka M. 2005. Cytokinin oxidase regulates rice grain production. Science 309:741-745. https://doi.org/10.1126/science.1113373
  2. Barry MB, Pham JL, Noyer AJL, Billot AC, Courtois AB, Ahmad AN. 2007. Genetic diversity of the two cultivated rice species (O. sativa and O. glaberrima) in Maritime Guinea. Evidence for interspecifc recombination. Euphytica 154:127-137. https://doi.org/10.1007/s10681-006-9278-1
  3. Causse MA, Fulton TM, Cho YG, Ahn SN, Chunwongse J, Wu K, Xiao J, Yu Z, Ronald PC, Harrington SC, Second G, McCouch SR, Tanksley SD. 1994. Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics 138:1251-1274.
  4. Fan C, Xing YZ, Mao HL, Lu TT, Han B, Xu C, Li XH, and Zhang Q. 2006. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor. Appl. Genet. 112:1164-1171. https://doi.org/10.1007/s00122-006-0218-1
  5. Foyer CH. 1987. The basis for source-sink interaction in leaves. Plant Physiol. Biochem. 25:649-657.
  6. Harlan J. 1992. Crops & Man. American Society of Agronomy/Crop Science Society of America, Madison, WI, pp. 295.
  7. Hirota O, Oka M, Takeda T. 1990. Sink activity estimation by sink size and dry matter increase during the ripening stage of barley and rice. Ann. Bot. 65:349-354.
  8. Jones MP, Mande S, Aluko K. 1997. Diversity and potential of Oryza glaberrima Steud. in upland rice breeding. Breed. Sci. 47:395-398.
  9. Kang JW, Suh JP, Kim DM, Oh CS, Oh JM, Ahn SN. 2008. QTL mapping of agronomic traits in an advanced backcross population from a cross between Oryza sativa L. cv. Milyang 23 and O. glaberrima. Korean J. Breed 40:243-249.
  10. Li C, Zhou A, Sang T. 2006. Genetic analysis of rice domestication syndromewith the wild annual species, Oryza nivara. New Phytologist 170:185-194. https://doi.org/10.1111/j.1469-8137.2005.01647.x
  11. Li F, Liu FH, Morinaga D, Zhao Z. 2011. A new gene for hybrid sterility from a cross between Oryza sativa and O. glaberrima. Plant Breeding 130:165-171. https://doi.org/10.1111/j.1439-0523.2010.01845.x
  12. Li J, Thomson M, McCouch SR. 2004. Fine mapping of a grain-wieght quantitative trait locus in the pericentromeric region of rice chromosome 3. Genetics 168:2187-2195 https://doi.org/10.1534/genetics.104.034165
  13. McCouch SR, Cho YG, Yano M, Paul E, Blinstrub M, Morishima H, Kinosita T. 1997. Report on QTL mnomenclature. Rice Genet. Newslett. Vol 14:11-13.
  14. McCouch SR, Teytelman L, Xu Y, Lobos KB, Clare K, Walton M, Fu B, Maghirang R, Li Z, Xing Y et al. 2002. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res. 9:199-207. https://doi.org/10.1093/dnares/9.6.199
  15. Panaud O, Chen X, and McCouch SR. 1996. Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativa L.). Mol. Gen. Genet. 252:597-607.
  16. Sahrawat KL, Sitka M. 2002. Comparative tolerance of O. sativa and O. glaberrima rice cultivars for iron toxicity in West Africa. Int. Rice. Res. Notes 27:30-31.
  17. Sarla, N. and B.P.M. Swamy. 2005. Oryza glaberrima: A source for the improvement of O. sativa. Curr. Sci. 89:955-963.
  18. Shim RA, Angeles ER, Ashikari M, Takashi T. 2010. Development and evaluation of Oryza glaberrima Steud. Chromosome segment substitution lines (CSSLs) in the background of O. sativa L. cv. Koshihikari. Breeding Sci. 60:613-619. https://doi.org/10.1270/jsbbs.60.613
  19. Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, and Yano M. 2008. Deletion in a gene associated with grain size increased yields during rice domestication. Nature Genet. Doi:10.1038/ng.169.
  20. Song XJ, Huang W, Shi M, Zhu MZ, and Lin HX. 2007. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat. Genet. 39:623-630. https://doi.org/10.1038/ng2014
  21. Suh JP, Ahn SN, Cho YC, Suh HS, Hwang HG. 2005. Mapping of QTLs for Yield Traits Using an Advanced Backcross Population from a Cross between Oryza sativa and O. glaberrima. Korean J. Breed 37(4):214-220.
  22. Thomson M J, Tai TH, McClung AM, Lai XH, Hinga ME, Lobos KB, Xu Y, Martinez CP, McCouch SR. 2003. Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa culivar Jefferson. Theor Appl Genet 107:479-493. https://doi.org/10.1007/s00122-003-1270-8
  23. Xie X, Jin F, Song MH, Suh JP, Hwang HG, Kim YG, McCouch SR, Ahn SN. 2008. Fine mapping of a yield-enhancing QTL cluster associated with transgressive variation in an Oryza sativa ${\times}$ O. rufipogon cross. Theor. Appl. Genet. 116:613-622. https://doi.org/10.1007/s00122-007-0695-x
  24. Xing YZ, Tang WJ, Xue WY, Xu CG, Zhang Q. 2008. Fine mapping of a major quantitative trait loci, qSPP7, controlling the number of spikeletsper panicle as a single Mendelian factor in rice. Theor. Appl. Genet. 116:789-796. https://doi.org/10.1007/s00122-008-0711-9
  25. Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T. 2000. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 12:2473-2483.