Current Statues of Phenomics and its Application for Crop Improvement: Imaging Systems for High-throughput Screening

작물육종 효율 극대화를 위한 피노믹스(phenomics) 연구동향: 화상기술을 이용한 식물 표현형 분석을 중심으로

  • Lee, Seong-Kon (Bio-crop development division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Kwon, Tack-Ryoun (Bio-crop development division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Suh, Eun-Jung (Bio-crop development division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Bae, Shin-Chul (Bio-crop development division, National Academy of Agricultural Science, Rural Development Administration)
  • 이성곤 (농촌진흥청 국립농업과학원 신작물개발과) ;
  • 권택윤 (농촌진흥청 국립농업과학원 신작물개발과) ;
  • 서은정 (농촌진흥청 국립농업과학원 신작물개발과) ;
  • 배신철 (농촌진흥청 국립농업과학원 신작물개발과)
  • Received : 2011.08.13
  • Published : 2011.09.30

Abstract

Food security has been a main global issue due to climate changes and growing world population expected to 9 billion by 2050. While biodiversity is becoming more highlight, breeders are confronting shortage of various genetic materials needed for new variety to tackle food shortage challenge. Though biotechnology is still under debate on potential risk to human and environment, it is considered as one of alternative tools to address food supply issue for its potential to create a number of variations in genetic resource. The new technology, phenomics, is developing to improve efficiency of crop improvement. Phenomics is concerned with the measurement of phenomes which are the physical, morphological, physiological and/or biochemical traits of organisms as they change in response to genetic mutation and environmental influences. It can be served to provide better understanding of phenotypes at whole plant. For last decades, high-throughput screening (HTS) systems have been developed to measure phenomes, rapidly and quantitatively. Imaging technology such as thermal and chlorophyll fluorescence imaging systems is an area of HTS which has been used in agriculture. In this article, we review the current statues of high-throughput screening system in phenomics and its application for crop improvement.

식물 피노믹스 분야에서 초고속 대량선발이 가능하도록 만든 화상기술(imaging technology)을 온실자동화 기술, 이미지 촬영 및 분석기술 등으로 분류하여 개념을 정리하고, 화상기술을 개발 및 응용하고 있는 주요 연구기관의 현황을 소개하였다. 연구동향 파악을 위해 작물의 내재해성 검정, 병해충진단, 종자활력 검정, 수확후 관리, 생체리듬 연구 등 다양한 분야에서 응용되고 있는 사례들을 살펴보았다. 향후 열 화상, 형광 화상 기술을 UV-induced blue green fluorescence, hyperspectral imaging 등과 상호 보완해서 multi-sensor 개념으로 발전시켜 나간다면, 식물의 생산량 증대를 위한 스트레스 내성자원 선발의 효율성을 극대화할 수 있을 뿐만 아니라 다양한 파장대의 영상정보로부터 각 스트레스의 특징을 catalogue화하는 것이 가능하여 다양한 스트레스를 정확히 진단하고 정량화할 수 있을 것으로 보이며, 나아가 각종 스트레스에 대한 조기 경보시스템으로도 활용할 수 있을 것이다. 호주 Plant Phenomics Centre에서는 온실과 포장을 포함한 Phenomics 기술의 종합적 개념도를 그림 4와 같이 제시하고 각 부문별 필요기술을 개발 중에 있는데, 종합기술로 완성된다면 현재의 작물 품종개량 속도를 획기적으로 향상시킬 수 있을 것으로 기대된다. 호주는 그 동안 분자생물학, 식물생리학 분야에서는 기술력을 확보해 왔지만 BT, IT 등 융복합농업기술분야에서는 다른 나라에 비해 역량을 결집하지 못하고 뒤쳐져 있었다고 볼 수 있는데, 연구개발의 궁극적인 목표인 실용화 단계에서의 기술우위를 선점함으로써 그간의 약세를 만회하고자 Phenomics 연구시설을 설치하였다고 한다. 이점은 BT 후발주자이면서 국제적 경쟁력을 확보하려는 우리에게 시사하는 바가 크다. Phenomics 연구는 생명공학기술을 통해 창출된 GM 식물체, 전통육종을 통해 육성된 육종재료 등 모든 유용 유전자원을 평가, 검정할 수 있는 신품종 육성의 기본 기술로 부상하고 있다. 지난 수년간 정체되어 있는 국내 종자시장을 고부가 수출산업으로 육성하기 위해서는 유용 유전자원, 농업생명공학산물의 실용화를 가속화하여야 하며, 이를 위해 피노믹스 기술 확보 및 시설 인프라 구축을 전략적으로 신중히 검토해봐야 할 시점이다.

Keywords

Acknowledgement

Supported by : 농촌진흥청

References

  1. Baker NR. 2008. Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89-113. https://doi.org/10.1146/annurev.arplant.59.032607.092759
  2. Baker NR, Rosenqvist E. 2004. Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. Journal of Experimental Botany 55:1607-1621. https://doi.org/10.1093/jxb/erh196
  3. Barbagallo RP, Oxborough K, Pallett KE, Baker NR. 2003. Rapid, noninvasive screening for perturbations of metabolism and plant growth using chlorophyll fluorescence imaging. Plant Physiol 132:485-493. https://doi.org/10.1104/pp.102.018093
  4. Boyer JS, James RA, Munns R, Condon TAG, Passioura JB. 2008. Osmotic adjustment leads to anomalously low estimates of relative water content in wheat and barley. Functional Plant Biology 35:1172-1182. https://doi.org/10.1071/FP08157
  5. Chaerle L, Leinonen I, Jones HG, Van Der Straeten D. 2007. Monitoring and screening plant populations with combined thermal and chlorophyll fluorescence imaging. Journal of Experimental Botany 58:773-784.
  6. Inoue Y, Kimball BA, Jackson RD, Pinter PJ, Reginato RJ. 1990. Remote Estimation of Leaf Transpiration Rate and Stomatal-Resistance Based on Infrared Thermometry. Agricultural and Forest Meteorology 51:21-33. https://doi.org/10.1016/0168-1923(90)90039-9
  7. James RA, Rivelli AR, Munns R, von Caemmerer S. 2002. Factors affecting CO2 assimilation, leaf injury and growth in salt-stressed durum wheat. Functional Plant Biology 29:1393-1403. https://doi.org/10.1071/FP02069
  8. Jones HG, Serraj R, Loveys BR, Xiong LZ, Wheaton A, Price AH. 2009. Thermal infrared imaging of crop canopies for the remote diagnosis and quantification of plant responses to water stress in the field. Functional Plant Biology 36:978-989. https://doi.org/10.1071/FP09123
  9. Kang J, Hwang JU, Lee M, Kim YY, Assmann SM, Martinoia E, Lee Y. 2010. PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid. Proc Natl Acad Sci U S A 107:2355-2360. https://doi.org/10.1073/pnas.0909222107
  10. Kranner I, Kastberger G, Hartbauer M, Pritchard HW. 2010. Noninvasive diagnosis of seed viability using infrared thermography. Proceedings of the National Academy of Sciences of the United States of America 107: 3912-3917. https://doi.org/10.1073/pnas.0914197107
  11. Lee Y, et al. 2008. The Arabidopsis small G protein ROP2 is activated by light in guard cells and inhibits light-induced stomatal opening. Plant Cell 20:75-87. https://doi.org/10.1105/tpc.107.054544
  12. McAlister ED, Myers J. 1940. The time course of photosynthesis and fluorescence observed simultaneously. City of Washington, The Smithsonian institution.
  13. Merlot S, Mustilli AC, Genty B, North H, Lefebvre V, Sotta B, Vavasseur A, Giraudat J. 2002. Use of infrared thermal imaging to isolate Arabidopsis mutants defective in stomatal regulation. Plant J 30:601-609. https://doi.org/10.1046/j.1365-313X.2002.01322.x
  14. Oerke EC, Steiner U, Dehne HW, Lindenthal M. 2006. Thermal imaging of cucumber leaves affected by downy mildew and environmental conditions. Journal of Experimental Botany 57:2121-2132. https://doi.org/10.1093/jxb/erj170
  15. Oxborough K. 2004. Imaging of chlorophyll a fluorescence: theoretical and practical aspects of an emerging technique for the monitoring of photosynthetic performance. Journal of Experimental Botany 55:1195-1205. https://doi.org/10.1093/jxb/erh145
  16. Poorter H, Niinemets U, Walter A, Fiorani F, Schurr U. 2010. A method to construct dose-response curves for a wide range of environmental factors and plant traits by means of a meta-analysis of phenotypic data. Journal of Experimental Botany 61:2043-2055. https://doi.org/10.1093/jxb/erp358
  17. Seelig HD, Hoehn A, Stodieck LS, Klaus DM, Adams WW, Emery WJ. 2008. The assessment of leaf water content using leaf reflectance ratios in the visible, near-, and short-wave-infrared. International Journal of Remote Sensing 29:3701-3713. https://doi.org/10.1080/01431160701772500
  18. Sirault XRR, James RA, Furbank RT. 2009. A new screening method for osmotic component of salinity tolerance in cereals using infrared thermography. Functional Plant Biology 36:970-977. https://doi.org/10.1071/FP09182
  19. Tang JY, Zielinski RE, Zangerl AR, Crofts AR, Berenbaum MR, Delucia EH. 2006. The differential effects of herbivory by first and fourth instars of Trichoplusia ni(Lepidoptera: Noctuidae) on photosynthesis in Arabidopsis thaliana. Journal of Experimental Botany 57:527-536. https://doi.org/10.1093/jxb/erj032
  20. Van Der Straeten D, Chaerle L, Van Caeneghem W, Messens E, Lambers H, Van Montagu M. 1999. Presymptomatic visualization of plant-virus interactions by thermography. Nature Biotechnology 17:813-816. https://doi.org/10.1038/11765
  21. Woo NS, Badger MR, Pogson BJ. 2008. A rapid, non-invasive procedure for quantitative assessment of drought survival using chlorophyll fluorescence. Plant Methods 4:27. https://doi.org/10.1186/1746-4811-4-27