Study on the Factors Influencing the Changes of Sesamol and Sesamolin in Sesame Oils during Thermal Oxidation

가열 산화 시 참기름 시료의 세사몰과 세사몰린 함량변화에 미치는 영향 요인

  • Lee, Seung Wook (Department of Food Science and Technology, Seoul National University of Science and Technology) ;
  • Kim, Tae Soo (Department of Food Science and Technology, Seoul National University of Science and Technology) ;
  • Kim, Mi-Ja (Department of Food Science and Biotechnology, Sungkyunkwan University) ;
  • Lee, Jae Hwan (Department of Food Science and Biotechnology, Sungkyunkwan University)
  • 이승욱 (서울과학기술대학교 식품공학과) ;
  • 김태수 (서울과학기술대학교 식품공학과) ;
  • 김미자 (성균관대학교 식품생명공학전공) ;
  • 이재환 (성균관대학교 식품생명공학전공)
  • Received : 2011.04.19
  • Accepted : 2011.08.08
  • Published : 2011.11.30

Abstract

Addition effects of free fatty acids (FFA), glycerol, monoacylglycerol (MAG), sesamol, and aqueous extracts of sesame seed meal (ASM) on the changes of sesamol and sesamolin were determined in thermally oxidized sesame oil (SO) at 180$^{\circ}C$ for 90 min. Sesamol and sesamolin in SO were analyzed by high performance liquid chromatography (HPLC). As the concentration of FFA and MAG in SO increased up to 10% (w/w), the concentration of sesamol increased significantly by 0.94 and 0.70 mM, respectively (p < 0.05) whereas sesamol in control samples increased by 0.09 mM for 90 min oxidation. Sesamolin in 10% MAG and FFA added SO significantly decreased by 15 and 18%, respectively (p < 0.05) compared to control samples. Sesamolin in SO with addition of 1.5 and 2.5 mM sesamol were not significantly different (p > 0.05). Addition effects of ASM on the changes of sesamol and sesamolin in SO were not constant during thermal treatment. Conversion of sesamol from sesamolin in SO during thermal treatment seemed to be influenced by the presence of FFA and MAG.

유리지방산(FFA), 글리세롤, MAG, 세사몰, 수용성 참깨박 추출물(ASM) 첨가에 의한 213$^{\circ}C$에서 21분 볶아 제조된 참기름의 180$^{\circ}C$ 열산화 시 세사몰과 세사몰린 함량 변화를 분석하였다. 90분간의 열산화에 의해 FFA와 MAG가 10% 첨가된 시료는 각각 0.94, 0.70 mM의 세사몰이 유의적으로 추가 생성되었으나 대조구는 0.09 mM만 증가하였다(p < 0.05). 세사몰린의 경우 FFA와 MAG 10% 첨가 시료는 대조구에 비해 15 및 18% 유의적으로 감소하였다 (p < 0.05). 1.5와 2.5 mM 첨가 세사몰은 세사몰린의 유의적인 변화를 유발하지 않았다(p > 0.05). ASM 첨가 시료에서 세사몰과 세사몰린의 일관적인 변화는 확인되지 않았다. 고온에서 볶은 참깨로부터 착유된 참기름의 가열 산화 시세사몰 생성 및 세사몰린 분해에는 FFA 및 MAG 같은 유지산화생성물의 함량에 주로 영향을 받는 것으로 사료된다.

Keywords

References

  1. Chung HY. 2007. Oxidative degradation kinetics of tocopherols during heating. J. Food Sci Nutr. 12: 115-118. https://doi.org/10.3746/jfn.2007.12.2.115
  2. Fukuda Y, Nagata M, Osawa T, Namiki M. 1986. Chemical aspects of the antioxidative activity of roasted sesame seed oil, and the effect of using the oil for frying. Agric. Biol. Chem. 50: 857-862. https://doi.org/10.1271/bbb1961.50.857
  3. Hussain SR, Terao J, Mathuushita S. 1986. Effect of browning products of phospholipids on autoxidation of methyly lioenete. J. Am. Oil Chem. Soc. 63: 1457-1560. https://doi.org/10.1007/BF02540875
  4. Kahyaoglu T, Kaya S. 2006. Modeling of moisture, color and texture changes in sesame seeds during the conventional roasting. J. Food Eng. 75: 167-177. https://doi.org/10.1016/j.jfoodeng.2005.04.011
  5. Kamal-Eldin A, Appelqvist LA. 1994. Variation in fatty acid composition of the different acyl lipids in seed oils from four sesamum species. J. Am. Oil Chem. Soc. 71: 135-139. https://doi.org/10.1007/BF02541547
  6. Kaur IP, Saini A. 2000. Sesamol exhibits antimutagenic activity against oxygen species mediated mutagenicity. Mutat. Res. 470: 71-76. https://doi.org/10.1016/S1383-5718(00)00096-6
  7. Lee JY, Choe EO. 2006. Extraction of lignan compounds from roasted sesame oil and their effects on the autoxidation of methyl linoleate. J. Food Sci. 71: 430-436. https://doi.org/10.1111/j.1750-3841.2006.00137.x
  8. Lee SW, Jeung MK, Park MH, Lee SY, Lee JH. 2010. Effects of roasting conditions of sesame seeds on the oxidative stability of pressed oil during thermal oxidation. Food Chem. 118: 681-685. https://doi.org/10.1016/j.foodchem.2009.05.040
  9. Namiki M. Antioxidants/antimutagens in food. 1990. Crit. Rev. Food Sci. Nutr. 29: 273-300. https://doi.org/10.1080/10408399009527528
  10. Park MH, Jeong MK, Yeo JD, Son HJ, Lim CL, Hong EJ, Noh BS, Lee JH. 2011. Application of solid phase-microextraction (SPME) and electronic nose techniques to differentiate volatiles of sesame oils prepared with diverse roasting conditions. J. Food Sci. 76: C80-C88. https://doi.org/10.1111/j.1750-3841.2010.01954.x
  11. Shahidi F, Naczk M. 2004. Phenolics in Food and Nutraceuticals. CRC press, Boca Raton, FL, USA, pp. 108-109.
  12. Shin MJ, Ahn MS. 2000. A study on the antioxidant activity of products of caramel-type-browning reaction. Korean J. Soc. Food Sci. 16: 629-639.
  13. Shyu YS, Hwang LS. 2002. Antioxidative activity of the crude extract of lignan glycosides from unroasted Burma black sesame meal. Food Res. Int. 35: 357-365. https://doi.org/10.1016/S0963-9969(01)00130-2
  14. Yeo JD, Park JW, Lee JH. 2011. Evaluation of antioxidant capacity of sesamol and free radical scavengers at different heating temperature. Eur. J. Lipid Sci. Technol. 113: 910-915. https://doi.org/10.1002/ejlt.201000553
  15. Yoshida H, Takagi S. 1999. Antioxidative effects of sesamol and tocopherols at various concentrations in oils during microwave heating. J. Sci. Food Agric. 79: 220-226. https://doi.org/10.1002/(SICI)1097-0010(199902)79:2<220::AID-JSFA173>3.0.CO;2-8
  16. Wu WH. 2007. The contents of lignans in commercial sesame oils of Taiwan and their changes during heating. Food Chem. 104: 341-344. https://doi.org/10.1016/j.foodchem.2006.11.055