참다래 '홍양' 품종의 차등발현유전자 분석

Analysis of Differentially Expressed Genes in Kiwifruit Actinidia chinensis var. 'Hongyang'

  • 배경미 (국립원예특작과학원 과수과) ;
  • 곽용범 (국립원예특작과학원 남해출장소) ;
  • 신일섭 (국립원예특작과학원 과수과) ;
  • 김세희 (국립원예특작과학원 과수과) ;
  • 김정희 (국립원예특작과학원 과수과) ;
  • 조강희 (국립원예특작과학원 과수과)
  • Bae, Kyung-Mi (National Institute of Horticultural & Herbal Science, RDA) ;
  • Kwack, Yong-Bum (Namhae Sub-Station, National Institute of Horticultural & Herbal Science, RDA) ;
  • Shin, II-Sheob (National Institute of Horticultural & Herbal Science, RDA) ;
  • Kim, Se-Hee (National Institute of Horticultural & Herbal Science, RDA) ;
  • Kim, Jeong-Hee (National Institute of Horticultural & Herbal Science, RDA) ;
  • Cho, Kang-Hee (National Institute of Horticultural & Herbal Science, RDA)
  • 투고 : 2011.10.21
  • 심사 : 2011.12.16
  • 발행 : 2011.12.30

초록

적색 과육 '홍양' 품종에서 차등발현하는 유전자를 찾기 위하여 mirror orientation selection (MOS)과 결합된 suppression subtractive hybridization (SSH) 실험을 수행하였다. 그 결과, 288개의 cDNA clone을 확보하였으며, colony PCR을 통해 192개의 positive clone을 선발하였고, 이들을 sequencing하였다. NCBI/Genbank 데이터베이스의 BLAST 검색를 이용하여 염기서열을 분석한 결과, 30개의 clone에서 기존에 알려진 유전자기능과의 유사성을 확인할 수 있었으며, 10개의 clone이 특이유전자였다. 그 중 3개의 clone(AcF21, AcF42, AcF106)은 과실 후숙과 관련된 ACC-oxidase와 상동성이 있었다. SSH의 결과를 통해 얻어진 이 유전자들의 차등발현양상을 확인하기 위하여 reverse transcription PCR(RT-PCR)과 quantitative real-time PCR(qReal-time PCR) 분석을 실시하였다. qReal-time PCR분석과 RT-PCR분석에서 모두 동일한 결과를 확인할 수 있었으며, 3개 clone 모두 '홍양'에서의 유전자발현수준이 '헤이워드'보다 더 높았다. AcF21은 다른 유전자들보다 가장 높은 발현수준을 나타내었는데, 만개 후 120일과 160일 모두 '홍양'에서의 발현수준이 높았다.

We used suppression subtractive hybridization (SSH) combined with mirror orientation selection (MOS) method to screen differentially expressed genes from red-fleshed kiwifruit 'Hongyang'. As a result, the 288 clones were obtained by subcloning PCR product and 192 clones that showed positive clones on colony PCR analysis were selected. All the positive clones were sequenced. After comparisons with the NCBI/Genbank database using the BLAST search revealed that 30 clones showed sequence similarity to genes from other organisms; 10 clones showed significant sequence similarity to known genes. Among these clones, 3 clones (AcF21, AcF42 and AcF106) had sequence homology to 1-aminicyclopropane-carboxylic acid (ACC)-oxidase (ACO) that known to be related to fruit ripening. The expression patterns of differentially expressed genes were further investigated to validate the SSH data by reverse transcription PCR (RT-PCR) and quantitative real-time PCR (qReal-time PCR) analysis. All the data from qReal-time PCR analysis coincide with the results obtained from RT-PCR analysis. Three clones were expressed at higher levels in 'Hongyang' than 'Hayward'. AcF21 was highly expressed in the other genes at 120 days after full bloom (DAFB) and 160 DAFB of 'Hongyang'.

키워드

참고문헌

  1. Anjanasree KN, Verma PK, Bansal KC. 2005. Differential expression of tomato ACC oxidase gene family in relation to fruit ripening. Curr Sci 89:1394-1399.
  2. Atkinson RG, Gunaseelan K, Wang MY, Luo L, Wang T, Norling C, Johnston S, Maddumage R, Schroder R, Shaffer RJ. 2011. Dissecting the role of climacteric ethylene in kiwifruit (Actinidia chinensis) ripening using an 1-aminicyclopropane- 1-carboxylic acid oxidase knockdown line. J Exp Bot 1093:1-15.
  3. Ban Y, Honda C, Bessho, Pang XM, Moriguchi T. 2007. Suppression subtractive hybridization identifies genes induced in response to UV-B irradiation in apple skin: isolation of a putative UDP-glucose 4-epimerase. J Exp Bot 58:1825-1834. https://doi.org/10.1093/jxb/erm045
  4. Barry CS, Blume B, Bouzayen M, Copper W, Hamilton AJ, Grierson D. 1996. Differential expression of the 1- aminocyclopropane-1-carboxylate oxidase gene family of tomato. The Plant J 9:525-535. https://doi.org/10.1046/j.1365-313X.1996.09040525.x
  5. Chang S, Puryear J, Cairney J. 1993. A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11:113-116. https://doi.org/10.1007/BF02670468
  6. Diatchenko L, Lau YFC, Campell A, Chenchick A, Moqadam F, Huang B, Lukyanov S, Lukyanov K, Gurskaya N, Sverdlov ED, Siebert PD. 1996. Suppression subtractive hybridization: A method for generating differentially regulated or tissue-specific cDNA probes and libraies. Proc Natl Acad Sci USA 93:6025-6030. https://doi.org/10.1073/pnas.93.12.6025
  7. Hunag HW, Ferguson AR. 2007. Genetic resources of kiwifruit: domestication and breeding. Hor Rev 33:1-121.
  8. Irifune K, Nichida T, Egawa H, Nagatani A. 2004. Pectin methylesterase inhibitor cDNA from kiwifruit. Plant Cell Rep 23:333-338. https://doi.org/10.1007/s00299-004-0835-6
  9. Jaeger SR, Harker FR. 2005. Consumer evaluation of novel kiwifruit: willingness-to-pay. J Sci Food Agric 85: 2519-2526. https://doi.org/10.1002/jsfa.2330
  10. Kauffmann S, legrand M, Geoffroy P, Fririg B. 1987. Biological function of pathogenesis-related proteins: four PR proteins of tobacco have 1,3-$\beta$-glucanase activity. EMBO J 6: 3209-3212.
  11. Ledger SE, Gardner RC. 1994. Cloning and characterization of five cDNAs for genes differentially expressed during fruit development of kiwifruit (Actinidia deliciosa var. deliciosa). Plant Mol Biol 25:877-886. https://doi.org/10.1007/BF00028882
  12. Li D, Deng Z, Chen C, Xia Z, Xia Z, Wu M, He P, Shoucai C. 2010. Identification and characterization of genes associated with tapping panel dryness from Hevea brasiliensis latex using suppression subtractive hybridization. BMC Plant Biol 10:140-152. https://doi.org/10.1186/1471-2229-10-140
  13. Liu C, Zhang M, Duan J, Wu K. 2008. Gene expression analysis of germinating rice seeds responding to high hydrostatic pressure. J Plant Physiol 165:1855-1864. https://doi.org/10.1016/j.jplph.2008.05.004
  14. MacDiarmid CWB, Gardner R. 1993. A cDNA sequence from kiwifruit homologus to 1-amonocyclopropane-1-carboxylic acid oxidase. Plant Physiol 101:691-692. https://doi.org/10.1104/pp.101.2.691
  15. Mathooko FM, Tsunashima Y, Kubo Y, Inaba A. 2004. Expression of 1-aminocyclopropane-1-carboxylate (ACC) oxidase gene in peach (Prunus persica L.) fruit in response to treatment with carbon dioxide and 1-methylcyclopropene: possible role of ethylene. Afri J Biotech 3:497-502.
  16. Mauch F, Mauch-Mani B, Boller T. 1988. Antifungal hydrolases in pea tissue. II. Inhibition of fungal growth by contaminations of chinase and $\beta$-1,3-glucanase. Plant physiol 88:936-942. https://doi.org/10.1104/pp.88.3.936
  17. Nguyen BL, Van Loey AM, Smout C, Verlent I, Duvetter T, Hendrickx ME. 2004. Effect of Intrinsic and extrinsic factors on the interaction of plant pectin methylesterase and its proteinaceous inhibitor from kiwifruit. J Agric Food Chem 52:8144-8150. https://doi.org/10.1021/jf048954m
  18. Park YK, Han JG, Hwang SI, Kim SH, Kang MS. 2011. Changes of photosynthesis, leaf and fruit characteristics of Actinidia arguta and hybrid kiwi (A. arguta ${\times}$ A. deliciosa) according to crown layer. Jour Korean For Soc 100:8-13.
  19. Park YS. 2009. Storability of new kiwifruit cultivar bred in Korea. Kor J Hort Sci Technol 27:123-127.
  20. Ramassamy S, Olmos E, Bouzayen M, Pech JC, Latche A. 1998. 1-aminocyclopropane-1-carboxylate oxidase of apple fruit is periplasmic. J Exp Bot 49:1909-1915.
  21. Rebrikov DV, Britanova OV, Gurskaya NG, LUkyanov KA, Tarabykin VS, Lukyanov S. 2000. Mirror orientation selection (MOS): a method for elimination false positive clones from libraries generated by suppression subtractive hybridization. Nucl Acids Res 28:1-4. https://doi.org/10.1093/nar/28.1.1
  22. Shin SH, Im HH, Lee JH, Kim DH, Chung WB, Kang KH, Cho SK, Shin JS, Chung YS. 2004. Genes of wild rice (Oryza grandiglumis) induced by wounding and yeast extract. J Life Sci 14:650-656. https://doi.org/10.5352/JLS.2004.14.4.650
  23. Vandevenne E, Chrisstiaens S, Buggenhout SV, Jolie RP, Conzalez-Vallinas M, Duvetter T, Declerck PJ, Hendrick ME, Gils A, Loey AV. 2011. Advances in understanding pectin methylesterse inhibitor in kiwi fruit: an immunological approach. Planta 233:287-298. https://doi.org/10.1007/s00425-010-1307-6
  24. Wang M, Li M, Meng A. 2003. Selection of a new redfleshed kiwifruit cultivar 'Hongyang'. Acta Hort 610: 115-117.
  25. Wegrzyn TF, MacRae EA. 1992. Pectinesterase, polygalacturonase, and $\beta$-galactosidase during softening of ethylene treated kiwifruit. HortScience 27:900-902.
  26. Whittaker DJ, Smith GS, Gardner R. 1997. Expression ethylene biosynthetic genes in Actinidia chinensis fruit. Plant Mol Biol 34:45-55. https://doi.org/10.1023/A:1005789220668
  27. Wurms KV, Chee AA, Reglinski T, Taylor JT. 2007. Suitability of phenylalanine ammonia lyase and chitinase activities as biochemical markers of soft rot resistance in Actinidia chinensis kiwifruit. New Zealand Plant Protein 60:228-234.