DOI QR코드

DOI QR Code

Miscibility Gap in Cu-Zr-Ag Alloy System and its Effect on the Structure and Plasticity of Metallic Glass

Cu-Zr-Ag계 비정질 합금의 불혼화 영역이 구조 및 소성에 미치는 영향

  • Lee, Jin-ju (Department of Materials Science and Engineering, Yonsei University) ;
  • Park, Kyoung-Won (Center for Biomaterials, Biomedical Institute, Korea Institute of Science and Technology) ;
  • Kim, Do-Hyang (High Temperature Energy Materials Center, Korea Institute of Science and Technology) ;
  • Fleury, Eric (Department of Materials Science and Engineering, Yonsei University)
  • 이진주 (한국과학기술연구원 고온에너지재료연구센터) ;
  • 박경원 (한국과학기술연구원 의공학연구소 생체재료연구단) ;
  • 김도향 (연세대학교 신소재공학과) ;
  • 에릭플러리 (한국과학기술연구원 고온에너지재료연구센터)
  • Received : 2011.01.17
  • Published : 2011.12.25

Abstract

In the present study, we show that the addition of Ag, an element having a positive enthalpy of mixing with Cu in the liquid state, enables the simultaneous enhancement of the glass forming ability and the plasticity in Cu-Zr-Ag bulk metallic glasses (BMGs). Rods of 4 mm diameter could be prepared with a fully amorphous structure and values of plastic strain up to 18% were measured under a compression mode for compositions around $Cu_{42.5}Zr_{47.5}Ag_{10}$. The possible role of Ag in the change of the atomic structure and the enhancement of the plastic strain in the ternary Cu-Zr-Ag BMGs is discussed based on analyses from transmission electron microscopy and EXAFS (extended X-ray absorption fine structure).

Keywords

Acknowledgement

Supported by : 교육과학기술부

References

  1. O. J. Kwon, Y. K. Lee, S. O. Park, J. C. Lee, Y. C. Kim, and E. Fleury, Mater. Sci. Eng. A 449, 169 (2006).
  2. J. C. Lee, K. Y. Park, K. H. Kim, E. Fleury, B. J. Lee, M. Wakeda, and Y. Shibutani, J. Mater. Res. 22, 3087 (2007). https://doi.org/10.1557/JMR.2007.0382
  3. T. A. Baser, J. Das, J. Eckert, and M. Baricco. J. Alloys Compds. 483, 146 (2009). https://doi.org/10.1016/j.jallcom.2008.07.147
  4. L. E. Tanner and R. Ray, Scripta Metall. 11, 783 (1977). https://doi.org/10.1016/0036-9748(77)90076-X
  5. D. E. Polk, A. Calka, and B. C. Giessen, Acta Metall. 26, 1097 (1978). https://doi.org/10.1016/0001-6160(78)90137-2
  6. A. Inoue, T. Masumoto, C. Suryanarayana, and A. Hoshi, J. Physique 41, 758 (1980).
  7. T. Zhang, A. Inoue, and T. Masumoto, Mater. Sci. Eng. A 181/A182, 131 (1994).
  8. F. Spaepen and A. I. Tub, Amorphous Metallic Alloys, edited by F. E. Luborsky, p.9,187, Butterworths, London (1983).
  9. A. S. Argon, Acta Metall. 27, 47 (1979). https://doi.org/10.1016/0001-6160(79)90055-5
  10. Y. C. Kim, K. B. Kim, E. Fleury, J. C. Lee, and D. H. Kim, J. Kor. Inst. Met. & Mater. 43, 815 (2005).
  11. C. C. Hays, C. P. Kim, and W. L. Johnson, Phys. Rev. Lett. 84, 2901 (2000). https://doi.org/10.1103/PhysRevLett.84.2901
  12. T. C. Hufnagel, C. Fan, R. T. Ott, J. Li, and S. Brennanal, Intermetallics 10, 1163 (2002) https://doi.org/10.1016/S0966-9795(02)00157-7
  13. H. Kato, T. Hirano, A. Matsuo, Y. Kawamura, and A. Inoue, Scripta Mater. 43, 503 (2000). https://doi.org/10.1016/S1359-6462(00)00452-8
  14. Y.C. Kim, J. H. Na, J. M. Park, D. H. Kim, J. K. Lee, and W. T. Kim, Appl. Phys. Lett. 83, 3093 (2003). https://doi.org/10.1063/1.1616198
  15. C. Fan and A. Inoue, Appl. Phys. Lett. 77, 46 (2000). https://doi.org/10.1063/1.126872
  16. M. Calin, J. Eckert, and L. Schultz, Scr. Mater. 48, 653 (2003). https://doi.org/10.1016/S1359-6462(02)00560-2
  17. C. Fan, R. T. Ott, and T. C. Hufnagel, Appl. Phys. Lett. 81, 1020 (2002). https://doi.org/10.1063/1.1498864
  18. J. C. Oh, T. Ohkubo, Y. C. Kim, E. Fleury, and K. Hono, Scr. Mater. 53, 165 (2005). https://doi.org/10.1016/j.scriptamat.2005.03.046
  19. T. Fujita, K. Konno, W. Zhang, V. Kumar, M. Matsuura, A. Inoue, T. Sakurai, and M. W. Chen, Phys. Rev. Lett. 103, 075502 (2009). https://doi.org/10.1103/PhysRevLett.103.075502
  20. W. Zhang and A. Inoue, J. Mater. Res. 21, 234 (2006). https://doi.org/10.1557/jmr.2006.0020
  21. K. H. Kang, I. Sa, J. C. Lee, E. Fleury, and B. J. Lee, Scr. Mater. 61 801 (2009). https://doi.org/10.1016/j.scriptamat.2009.07.002
  22. B. Ravela and M. Newville, J. Synchrotron Rad. 12, 537 (2005). https://doi.org/10.1107/S0909049505012719
  23. D. Turnbull, Contemp. Phys. 10, 473 (1969). https://doi.org/10.1080/00107516908204405
  24. S. W. Lee, S. C. Lee, Y. C. Kim, E. Fleury, and J. C. Lee, J. Mater. Res. 22, 486 (2007). https://doi.org/10.1557/jmr.2007.0063
  25. K.W. Park and E. Fleury, In preparation.
  26. K.W. Park, Y. Shibutani, M. L. Falk, B.J. Lee, and J.C. Lee, Scr. Mater. 63, 231 (2010). https://doi.org/10.1016/j.scriptamat.2010.03.063
  27. Y. Q. Cheng, A.J. Cao, H.W. Sheng, and E. Ma, Acta Mater. 56, 5263 (2008). https://doi.org/10.1016/j.actamat.2008.07.011