DOI QR코드

DOI QR Code

Mechanical Properties and Fabrication of Nanostructured Mg2SiO4-MgAl2O4 Composites by High-Frequency Induction Heated Combustion

기계적 활성화된 분말로부터 고주파유도 가열 연소합성에 의한 나노구조 Mg2SiO4-MgAl2O4 복합재료 제조 및 기계적 특성

  • Shon, In-Jin (Division of Advanced Materials Engineering and the Research Center of Advanced Materials Development, Engineering College, Chonbuk National University) ;
  • Kang, Hyun-Su (Division of Advanced Materials Engineering and the Research Center of Advanced Materials Development, Engineering College, Chonbuk National University) ;
  • Hong, Kyung-Tae (Advanced Functional Materials Research Center, Korea Institute of Science and Technology) ;
  • Doh, Jung-Mann (Advanced Functional Materials Research Center, Korea Institute of Science and Technology) ;
  • Yoon, Jin-Kook (Advanced Functional Materials Research Center, Korea Institute of Science and Technology)
  • 손인진 (전북대학교 신소재공학부, 신소재개발연구센터) ;
  • 강현수 (전북대학교 신소재공학부, 신소재개발연구센터) ;
  • 홍경태 (한국과학기술연구원, 계면 엔지니어링 연구센터) ;
  • 도정만 (한국과학기술연구원, 계면 엔지니어링 연구센터) ;
  • 윤진국 (한국과학기술연구원, 계면 엔지니어링 연구센터)
  • Received : 2011.05.09
  • Published : 2011.08.25

Abstract

Nanopowders of MgO, $Al_2O_3$ and $SiO_2$ were made by high energy ball milling. The rapid sintering of nanostructured $MgAl_2O_4-Mg_2SiO_4$ composites was investigated by a high-frequency induction heating sintering process. The advantage of this process is that it allows very quick densification to near theoretical density and inhibition of grain growth. Nanocrystalline materials have received much attention as advanced engineering materials with improved physical and mechanical properties. As nanomaterials possess high strength, high hardness, excellent ductility and toughness, undoubtedly, more attention has been paid for the application of nanomaterials. Highly dense nanostructured $MgAl_2O_4-Mg_2SiO_4$ composites were produced with simultaneous application of 80MPa pressure and induced output current of total power capacity (15 kW) within 2min. The sintering behavior, gain size and mechanical properties of $MgAl_2O_4-Mg_2SiO_4$ composites were investigated.

Keywords

Acknowledgement

Supported by : 한국과학기술연구원

References

  1. H.S. Ryu, K.S. Hong, J.K. Kim, and J.H. Lee, Biomaterials 25, 393 (2004). https://doi.org/10.1016/S0142-9612(03)00538-6
  2. T.J. Webster, E.A. Massa-Schlueter, J.L. Smith, and E.B. Slamovich, Biomaterials 25, 2111 (2004). https://doi.org/10.1016/j.biomaterials.2003.09.001
  3. J.C. Dubois, C. Souchier, M.L. Couble, P. Exbrayat, and M.LLissac, Biomaterials 20, 1841 (1999). https://doi.org/10.1016/S0142-9612(99)00082-4
  4. D. Goeuriot, J.C. Dubois, d. Merle, F. Thevenot, and P. Exbrayat, J. Eur. Ceram. Soc. 18, 2045 (1998). https://doi.org/10.1016/S0955-2219(98)00117-4
  5. F. Tavangarian and R. Emadi, Materials Research Bulletin 45, 388 (2010). https://doi.org/10.1016/j.materresbull.2009.12.032
  6. Siyu Ni, Lee Chou, and Jiang Chang, Ceramics International 33, 83 (2007). https://doi.org/10.1016/j.ceramint.2005.07.021
  7. I.J. Shon, I.Y. Ko, J.M. Doh, and J.K. Yoon, J. Ceram. Pro. Res. submitted for publication (2011).
  8. S. Anappan, L.J. Berchmans, C.O. Augustin, Mater. Lett. 58, 2283 (2004). https://doi.org/10.1016/j.matlet.2004.01.033
  9. C. Baudin, R. Martinez, and P. Pena, J. Am. Ceram. Soc. 78, 1857 (1995). https://doi.org/10.1111/j.1151-2916.1995.tb08900.x
  10. J.H. Belding and E.A. Letzgus, Process for producing magnesium aluminate spinel, U.S. Patent No. 3,950,504 (April 13, 1976).
  11. J. Karch, R. Birringer, and H. Gleiter. Nature 330, 556 (1987). https://doi.org/10.1038/330556a0
  12. A. M. George, J. Iniguuze, and L. Bellaiche, Nature 413, 54 (2001). https://doi.org/10.1038/35092530
  13. A. M. George, J. Iniguuze, and L. Bellaiche, Nature 413, 54 (2001). https://doi.org/10.1038/35092530
  14. Z. Fang and J.W. Eason, Int. J. Refrac. 13, 297 (1995). https://doi.org/10.1016/0263-4368(95)92675-A
  15. A.I.Y. Tok, I.H. Luo, and F.Y.C. Boey, J. Mate. Sci. Eng. A 383, 229 (2004). https://doi.org/10.1016/j.msea.2004.05.071
  16. H.S. Kang, J.M. Doh, K.T. Hong, I.Y. Ko, and I.J. Shon, Kor. J. Met., Mater. 48, 1009 (2010). https://doi.org/10.3365/KJMM.2010.48.11.1009
  17. N.R. Park. M.K. Choe, J,S, Park. W. Kim, and I.J. Shon, Met. Mater. Inst. 15, 765 (2009). https://doi.org/10.1007/s12540-009-0765-x
  18. C.Suryanarayana, M.Grant Norton, X-ray Diffraction A Practical Approach, Plenum Press, New York (1998).
  19. O.Knacke, O.Kubaschewski, and K. Hesselmann, Thermochemical Properties of Inorganic Substances, Springer-Verlag, London (1991).
  20. Z. Shen, M. Johnsson, Z. Zhao, and M. Nygren, J. Am. Ceram. Soc. 85, 1921 (2002). https://doi.org/10.1111/j.1151-2916.2002.tb00381.x
  21. J. R. Friedman, J. E. Garay. U. Anselmi-Tamburini, and Z. A. Munir, Intermetallics. 12, 589 (2004). https://doi.org/10.1016/j.intermet.2004.02.005
  22. J. E. Garay, J. E. Garay. U. Anselmi-Tamburini, and Z. A. Munir, Acta Mater. 51, 4487 (2003). https://doi.org/10.1016/S1359-6454(03)00284-2
  23. K. Niihara, R. Morena, and D. P. H. Hasselman, J. Mater. Sci. Lett. 1, 12 (1982).